欢迎来到天天文库
浏览记录
ID:45611315
大小:225.42 KB
页数:7页
时间:2019-11-15
《高《运筹学》实验指导书》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、实验一线性规划问题建模及求解一、实验学时2学时二、实验目的掌握在Excel屮建立线性规划模型的方法,并能对得到的运算结果报告、敏感度报告及极限值报告进行分析。三、实验内容在Excel中建立线性规划模型并求解。四、实验过程练习1某电视机厂生产四种型号的特用电视机:I型一一轻便黑白,II型——正规黑门,III型一一轻便彩色,IV型一一正规彩色。各型号每台所需的组装时间、调试时间、销售收入以及该厂组装调试能力如表1所示。表1I11111IV工厂能力(h)组装时间(h)81012152000调试时间(h)2245500售价(白元)46810但现在显
2、像管紧缺,每月最多只能进货180只,其中彩色显像管不超过100只。令州宀,%兀依次表示各型号每月计划产量。现丄厂需拟定使目标总俏售收入z为最人的生产计划,在Excel中建立该问题的线性规划模型并求解。实验步骤:1.在Excel中建立数学模型,如图1所示,并按表2定义各单元格名称;单元格名称生产量实际使川量售价■百元一台限制条件总销售收入范围C14:F14G7:G10C3:F317:110G31.加载Excel提供的“规划求解”模块,设置规划求解参数;(1)确认加载“规划求解”,如尚未加载请先加载:工具T加载宏……T规划求解(2)依次单击工具
3、T规划求解,如图2所示设置规划求解参数:规划求解参数X[求feisrJ等于:f最犬值血)•摄小值•值为①)0ZD设置目标单元格g)■可变单元格©)$C$13:$F$13戲束@):实际使用量<=限制条件「添加@)I改cFI单击“选项S进行选项设置,如图3所示:規划求解选项最长运算时间(X):迭代次数4、Z)•中心差分©療索O牛顿法Q)•共犯法(Q)(1)单击“确定”后,回到图2所示对话框,单击“求解”,得到图4所示对话框:規划求解结果篠乎解找到-解,可满足所有的约束及摄优报告®运算结果报告6保存规划求解结果®/恢复为原值敏感性报告极限值报告「确定—II取消II帮助01)1求解结果如图5所示:图5练习2某工厂计划生产甲、乙两种产品,具体数据如表3所示:表3每产千7____克、资品甲乙资源限暈煤<t)94360电(Kw•h)45200油(t)310300单位价格(万元)712如何安排生产计划,使该工厂获利最多?要求:参照练习1建立相关模型并5、求解。实验二网络分析问题建模及求解一、实验学时2学时二、实验冃的掌握在Excel屮建立网络分析问题模型的方法,并能根据求解结果进行分析解决实际问题。三、实验内容在Excel屮建立最短路问题、最人流问题模型并求解。四、实验过程练习1有9个城市刃,临…到内,其公路网如图6所示,弧旁数字是该段公路的长度,有一批货物要从VJ运到內,问走哪条路最短?实验步骤:1•按照图9在相应的单元格内输入文木;按照表4,在相应单元格内输入公式。J14=SUM(C14:J14)D22=SUM(C14:C21)D24=K15J15=SUM(C15:J15E22=SUM6、(D14:D21)E24=K16J16=SUM(C16:J16)F22=SUM(E14:E21)F24=K17J17=SUM(C17:J17)G22=SUM(F14:F21)G24=K18J18=SUM(CI8:J18)H22=SUM(G14:G21)H24=K19J19=SUM(C19:J19)122=SUM(H14:H21)124=K20J20=SUM(C20:J20)J22=SUM(I14:I21)J24=K21J21=SUM(C21:J21)K22=SUM(J14:J21)K24=K152.规划求解参数设置如图7所示。划求解参数等于7、O最大值龜)©最小值@)O值为①)设量目标单元格0):可变单元格「$C$14,$E$14,$D$15,$F$15$G$15,$国8、[推测©]约束@):$C$22:$I$22=$C$24:$I$24$J$22=1$K$14=1(哥除@)]图7其中可变单元格为:$C$14,$E$14,$D$15,$F$15,$G$15,$J$16,$H$17,$G$18,$H$19,$J$19,$I$20,$J$20,$J$21。即如图8,并将矩形区域中其它单元格(底色为浅绿色)设置为0;“选项”中选取“假定非负”和“釆用线性模型”,在约束条件中还要将所有可变9、单元格设置为0・1变量(bin)。3・求解,得到结果如图9所示。ABc_DEFGHIJKLM賂长&5V2V3V4V5V6V7V8V9VI34V2323V35V43V53V612.
4、Z)•中心差分©療索O牛顿法Q)•共犯法(Q)(1)单击“确定”后,回到图2所示对话框,单击“求解”,得到图4所示对话框:規划求解结果篠乎解找到-解,可满足所有的约束及摄优报告®运算结果报告6保存规划求解结果®/恢复为原值敏感性报告极限值报告「确定—II取消II帮助01)1求解结果如图5所示:图5练习2某工厂计划生产甲、乙两种产品,具体数据如表3所示:表3每产千7____克、资品甲乙资源限暈煤<t)94360电(Kw•h)45200油(t)310300单位价格(万元)712如何安排生产计划,使该工厂获利最多?要求:参照练习1建立相关模型并
5、求解。实验二网络分析问题建模及求解一、实验学时2学时二、实验冃的掌握在Excel屮建立网络分析问题模型的方法,并能根据求解结果进行分析解决实际问题。三、实验内容在Excel屮建立最短路问题、最人流问题模型并求解。四、实验过程练习1有9个城市刃,临…到内,其公路网如图6所示,弧旁数字是该段公路的长度,有一批货物要从VJ运到內,问走哪条路最短?实验步骤:1•按照图9在相应的单元格内输入文木;按照表4,在相应单元格内输入公式。J14=SUM(C14:J14)D22=SUM(C14:C21)D24=K15J15=SUM(C15:J15E22=SUM
6、(D14:D21)E24=K16J16=SUM(C16:J16)F22=SUM(E14:E21)F24=K17J17=SUM(C17:J17)G22=SUM(F14:F21)G24=K18J18=SUM(CI8:J18)H22=SUM(G14:G21)H24=K19J19=SUM(C19:J19)122=SUM(H14:H21)124=K20J20=SUM(C20:J20)J22=SUM(I14:I21)J24=K21J21=SUM(C21:J21)K22=SUM(J14:J21)K24=K152.规划求解参数设置如图7所示。划求解参数等于
7、O最大值龜)©最小值@)O值为①)设量目标单元格0):可变单元格「$C$14,$E$14,$D$15,$F$15$G$15,$国
8、[推测©]约束@):$C$22:$I$22=$C$24:$I$24$J$22=1$K$14=1(哥除@)]图7其中可变单元格为:$C$14,$E$14,$D$15,$F$15,$G$15,$J$16,$H$17,$G$18,$H$19,$J$19,$I$20,$J$20,$J$21。即如图8,并将矩形区域中其它单元格(底色为浅绿色)设置为0;“选项”中选取“假定非负”和“釆用线性模型”,在约束条件中还要将所有可变
9、单元格设置为0・1变量(bin)。3・求解,得到结果如图9所示。ABc_DEFGHIJKLM賂长&5V2V3V4V5V6V7V8V9VI34V2323V35V43V53V612.
此文档下载收益归作者所有