《论文_历年高考高考数学高考数学新题型的解题策略初探(定稿)》

《论文_历年高考高考数学高考数学新题型的解题策略初探(定稿)》

ID:45552826

大小:71.67 KB

页数:8页

时间:2019-11-14

《论文_历年高考高考数学高考数学新题型的解题策略初探(定稿)》_第1页
《论文_历年高考高考数学高考数学新题型的解题策略初探(定稿)》_第2页
《论文_历年高考高考数学高考数学新题型的解题策略初探(定稿)》_第3页
《论文_历年高考高考数学高考数学新题型的解题策略初探(定稿)》_第4页
《论文_历年高考高考数学高考数学新题型的解题策略初探(定稿)》_第5页
资源描述:

《《论文_历年高考高考数学高考数学新题型的解题策略初探(定稿)》》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、一类高考数学新题型的解题策略初探零陵电大邓益阳【摘要】:随着教育改革的不断深化,高考要求也在发生着深刻变化.近几年全国齐地高考数学模拟试题和高考中出现的一种新题型一一数学阅读理解题。本文分析了这类题的本质特点,从四个方面对求解这种题型的解题策略进行了初步探索:一、紧扣信息,发掘本质;二、紧扣信息,归纳类比;三、紧扣信息,探索加工;四、紧扣信息,创新思维。(是文章的主干,也就是是屮心。)【关键词】:新题型信息策略探索创新(要求为名词)随着教育改革的不断深化,高考要求也在发生着深刻的变化。高考数学《考试说明》屮明确要求学生能阅读、理解对问题进行陈述的材料;能综合运用所学的数学知识、思想和方法解

2、决问题,并能用数学语言正确地加以表述。对应于这一要求,近年来,不论是全国各地高考数学模拟试题,还是高考数学全国卷、上海卷等,均推出了一类高考数学新题型一一数学阅读理解题,这种题型要求考生在短时间内读懂并理解一个陌生的数学问题的情景(如定义一种概念,约定一种运算,给出某个图形等),然后运用所学的知识和己掌握的解题技能灵活地进行解题。这类题冃往往设计运算量不大,但思维量较大,同时它对学生提出了较高的要求,不但要求学生掌握知识,更要求学生掌握研究问题的方法,从而从根木上体现了高考命题“遵循中学教学大纲,但乂不拘泥于教学大纲”的原则,并更好地为现行的研究性学习服务。下面通过具体的例题来探究这类题型

3、的解题策略。一、紧扣信息,发掘本质有些问题给出了我们未曾见过的新的泄义或新的运算,这需耍我们紧扣信息,深刻理解,发掘其信息的本质。例1、(2003年重庆市高考模拟试题)设M、P是两个非空集合,若规定:M-P={xlxeM且x《P},则M—(M-P)=分析:此题给出了种新的集合Z间的关系,因此首先耍紧扣信息,深刻理解,发掘其本质:M-P已不是正常意义下的减法,而是M中除P中的元素。理解了这一点,可以利用图形直观地加以理解,图1表示图]M-P,图2表示M—(M-P),容易得出其答案为:MPP.例2、(2003年昆明市高考模拟试题)已知凸函数的性质定理:“若函数f(x)在区间D上是凸函数,则对于

4、区间D内的任意X1?X2,...,Xn,均有:1V+V++V-2•n则在△ABC中,sinA+sinB+sinC的1[f(XJ+f(X2)+.・.+f(Xn)]Wf(】2…”)n上是凸函数,若函数y=sinx在区间[0,兀)最大值是(B、C、3^3D、V32分析:此题中凸函数的性质为己知,对考生的要求是能读懂并深刻地理解其性质定理,发掘其本质,月.能在新情境下运用,掌握了这一点,由凸函数的性质定理有:*(sinA+sinB+sinC)Wsin人+f十°=sin60°故答案选C。例3、(2002年新课程高考题)甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm?)品种第1

5、年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8其中产量比较稳定的小麦试验品种是分析:这是一个图表问题,解题的关键是从中抽彖出数学化的本质:计算并比较样本方差的大小,只需看两种小麦的样本方差哪个小,显然,结果为品种甲。二.紧扣信息,类比推广有些问题给出了一种新的情景,通过理解,考生可以把它和所求的结论进行类比,找岀它们共同点,从己知推广到未知,从而达到正确求解的冃的.例4、(2001年上海高考题)已知两个圆:x2+y2=l®与x?+(y・3尸二1②,则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆的情况下加以推广,即要求得到一

6、个更一般的命题,而已知命题要成为所推广命题的一个特例,推广的命题为:分析:题H给我们提供的信息点是两半径相等的圆的方程相减就得到该两圆的对称轴方程,将题设屮所给出①,②的特殊方程推广归纳到一般情况:设圆的方程:(x-a)2+(y—b)2=r2③与(x—c)2+(y—d)2=r2④,其中aHc或bHd,则由③一④可得两圆的对称轴方程:2(c・a)x+2(d-b)y+a2+b2-c2-d2=0例5、(2003年全国高考题)在平面几何里,有勾股定理「'设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2;拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积和底面枳的关系,可以得到的正确

7、结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两相互垂直,则C分析:题干小明确提示:把“平面勾股定理”推广为“空间勾股定理”,“研究三棱锥的侧面面积与底面面积的关系”,而在平面几何中学生对勾股定理非常熟悉,拓展到空间对学生来讲较为困难,这时可以用特殊的图形来进行探索,如图,三棱锥A-BCD,已知面ABC,ACD,ADB两两垂直.设AB=AC=AD=1,贝USaAbc=SaAbd=Saacd=1/2,Sab

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。