欢迎来到天天文库
浏览记录
ID:45542127
大小:78.00 KB
页数:7页
时间:2019-11-14
《2019高考数学二轮复习 课时跟踪检测(十九)圆锥曲线中的定点、定值、存在性问题(大题练)理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时跟踪检测(十九)圆锥曲线中的定点、定值、存在性问题(大题练)A卷——大题保分练1.(2018·成都模拟)已知椭圆C:+=1(a>b>0)的右焦点F(,0),长半轴长与短半轴长的比值为2.(1)求椭圆C的标准方程;(2)设不经过点B(0,1)的直线l与椭圆C相交于不同的两点M,N,若点B在以线段MN为直径的圆上,证明直线l过定点,并求出该定点的坐标.解:(1)由题意得,c=,=2,a2=b2+c2,∴a=2,b=1,∴椭圆C的标准方程为+y2=1.(2)证明:当直线l的斜率存在时,设直线l的方程为y=kx+m(m≠1),M(x1,y1),N(x2,y2).由消去y可得
2、(4k2+1)x2+8kmx+4m2-4=0.∴Δ=16(4k2+1-m2)>0,x1+x2=,x1x2=.∵点B在以线段MN为直径的圆上,∴·=0.∵·=(x1,kx1+m-1)·(x2,kx2+m-1)=(k2+1)x1x2+k(m-1)(x1+x2)+(m-1)2=0,∴(k2+1)+k(m-1)+(m-1)2=0,整理,得5m2-2m-3=0,解得m=-或m=1(舍去).∴直线l的方程为y=kx-.易知当直线l的斜率不存在时,不符合题意.故直线l过定点,且该定点的坐标为.2.(2018·全国卷Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l
3、与C交于A,B两点,AB=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2),由得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以AB=AF+BF=(x1+1)+(x2+1)=.由题设知=8,解得k=1或k=-1(舍去).因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为
4、(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.3.(2018·贵阳模拟)如图,椭圆C:+=1(a>b>0)的左顶点与上顶点分别为A,B,右焦点为F,点P在椭圆C上,且PF⊥x轴,若AB∥OP,且AB=2.(1)求椭圆C的方程;(2)已知Q是C上不同于长轴端点的任意一点,在x轴上是否存在一点D,使得直线QA与QD的斜率乘积恒为-,若存在,求出点D的坐标,若不存在,说明理由.解:(1)由题意得A(-a,0),B(0,b),可设P(c,t)(t>0),∴+=1,得t=,即P,由AB∥OP得=,即b=c,∴a2=b2+c2=2b2,①又AB=2,∴a2
5、+b2=12,②由①②得a2=8,b2=4,∴椭圆C的方程为+=1.(2)假设存在D(m,0),使得直线QA与QD的斜率乘积恒为-,设Q(x0,y0)(y0≠0),则+=1,③∵kQA·kQD=-,A(-2,0),∴·=-(x0≠m),④由③④得(m-2)x0+2m-8=0,即解得m=2,∴存在点D(2,0),使得kQA·kQD=-.4.(2018·昆明模拟)已知椭圆C:+=1(a>b>0)的焦距为4,P是椭圆C上的点.(1)求椭圆C的方程;(2)O为坐标原点,A,B是椭圆C上不关于坐标轴对称的两点,设=+,证明:直线AB的斜率与OD的斜率的乘积为定值.解:(1)由题意
6、知2c=4,即c=2,则椭圆C的方程为+=1,因为点P在椭圆C上,所以+=1,解得a2=5或a2=(舍去),所以椭圆C的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),x1≠x2且x1+x2≠0,由+=,得D(x1+x2,y1+y2),所以直线AB的斜率kAB=,直线OD的斜率kOD=,由得(x1+x2)(x1-x2)+(y1+y2)(y1-y2)=0,即·=-,所以kAB·kOD=-.故直线AB的斜率与OD的斜率的乘积为定值-.B卷——深化提能练1.(2018·安徽江南十校联考)在平面直角坐标系中,直线x-y+m=0不过原点,且与椭圆+=1有两个不同的公
7、共点A,B.(1)求实数m的取值所组成的集合M;(2)是否存在定点P使得任意的m∈M,都有直线PA,PB的倾斜角互补?若存在,求出所有定点P的坐标;若不存在,请说明理由.解:(1)因为直线x-y+m=0不过原点,所以m≠0.将x-y+m=0与+=1联立,消去y,得4x2+2mx+m2-4=0.因为直线与椭圆有两个不同的公共点A,B,所以Δ=8m2-16(m2-4)>0,所以-2
此文档下载收益归作者所有