资源描述:
《2019年高中数学 2.3.2.2双曲线方程及性质的应用课时作业 新人教A版选修2-1 》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019年高中数学2.3.2.2双曲线方程及性质的应用课时作业新人教A版选修2-1一、选择题(每小题3分,共18分)1.(xx·重庆高二检测)已知双曲线x2-y2=2,过定点P(2,0)作直线l与双曲线有且只有一个交点,则这样的直线l的条数为( )A.1B.2C.3D.4【解析】选B.因为点P(2,0)在双曲线含焦点的区域内,故只有当直线l与渐近线平行时才会与双曲线只有一个交点,故这样的直线只有两条.【变式训练】过双曲线x2-=1的右焦点作直线与双曲线交于A,B两点,若
2、AB
3、=16,这样的直线有( )A.一条 B.两条 C.三条 D
4、.四条【解析】选C.过右焦点且垂直于x轴的弦长为16,因为
5、AB
6、=16,所以当l与双曲线的两交点都在右支上时只有一条.又因为实轴长为2,16>2,所以当l与双曲线的两交点在左、右两支上时应该有两条,共三条.2.(xx·长春高二检测)已知双曲线E的中心在原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为N(-12,-15),则E的方程为( )A.-=1B.-=1C.-=1D.-=1【解析】选B.由已知条件易得直线l的斜率k==1,设双曲线方程为-=1(a>0,b>0),A(x1,y1),B(x2,y2),则-=1,-=1,
7、两式相减并结合x1+x2=-24,y1+y2=-30得=,从而=1,又因为a2+b2=c2=9,故a2=4,b2=5,所以E的方程为-=1.【拓展延伸】解决与双曲线弦的中点有关问题的两种方法(1)根与系数的关系法:联立直线方程和双曲线方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决.(2)点差法:利用端点在曲线上,坐标满足方程,将端点坐标分别代入双曲线方程,然后作差,构造出中点坐标和斜率的关系,可求斜率k=.这是解决与中点有关问题的简便而有效的方法.求弦中点轨迹问题,此方法依然有效.3.(xx·郑州高二检测)双曲线-
8、=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2⊥x轴,则双曲线的离心率为( )A.B.C.D.【解题指南】将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c的关系,求出离心率的值.【解析】选B.将x=c代入双曲线的方程得y=,即M,在△MF1F2中,tan30°=,即=,解得e==.4.F1,F2是双曲线-y2=1的两个焦点,过右焦点F2作倾斜角为的弦AB,则△F1AB的面积为( )A.B.2C.D.【解析】选B.由双曲线-y2=1,得a2=3,b2=1,c2=
9、a2+b2=4,所以c=2,F1(-2,0),F2(2,0),直线AB:y=x-2.由得2x2-12x+15=0.设A(x1,y1),B(x2,y2),则x1+x2=6,x1·x2=,所以
10、AB
11、=
12、x1-x2
13、=·=2.又F1到直线AB:x-y-2=0的距离为:d==2,所以=×d×
14、AB
15、=×2×2=2.5.(xx·攀枝花高二检测)P是双曲线-=1右支上的一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则
16、PM
17、-
18、PN
19、的最大值为( )A.9B.8C.7D.6【解析】选A.由双曲线-=1,知a2=9,b2=16,所以
20、c2=25,所以c=5.因此双曲线左、右焦点分别是F1(-5,0),F2(5,0),由圆的方程知,两圆的圆心分别为左、右焦点,由双曲线的定义知
21、PF1
22、-
23、PF2
24、=2a=6,结合图形当M为PF1延长线与圆交点时PM最长,当N为PF2与圆交点时PN最短,此时
25、PM
26、-
27、PN
28、最大,故最大值为6+2+1=9.6.(xx·天津高二检测)已知双曲线的方程为-=1(a>0,b>0),过左焦点F1作斜率为的直线交双曲线的右支于点P,且y轴平分线段F1P,则双曲线的离心率为( )A.B.+1C.D.2+【解析】选A.由双曲线-=1(a>0,b>0),得左焦点F
29、1(-c,0),则直线方程为y=(x+c).又PF1的中点在y轴上,故P点横坐标为xP=c,代入直线y=(x+c),得yP=c,又点P在双曲线上,故-=1,即c4-a2c2+a4=0,所以e4-e2+1=0,解得e=或e=(舍).二、填空题(每小题4分,共12分)7.过点A(6,1)作直线与双曲线x2-4y2=16相交于两点B,C,且A为线段BC的中点,则直线的方程为 .【解题指南】根据直线经过点A(6,1),设出直线方程y-1=k(x-6);根据点A(6,1)为线段BC的中点,应用中点坐标公式,确定B,C的坐标关系;应用“点差法”确定直线
30、的斜率.【解析】依题意可得直线的斜率存在,设为k(k≠0),则直线的方程为y-1=k(x-6).设B(x1,