高中数学课时提升作业十四2.2.2.2双曲线方程及性质的应用(含解析)新人教A版选修

高中数学课时提升作业十四2.2.2.2双曲线方程及性质的应用(含解析)新人教A版选修

ID:44687192

大小:277.21 KB

页数:11页

时间:2019-10-24

高中数学课时提升作业十四2.2.2.2双曲线方程及性质的应用(含解析)新人教A版选修_第1页
高中数学课时提升作业十四2.2.2.2双曲线方程及性质的应用(含解析)新人教A版选修_第2页
高中数学课时提升作业十四2.2.2.2双曲线方程及性质的应用(含解析)新人教A版选修_第3页
高中数学课时提升作业十四2.2.2.2双曲线方程及性质的应用(含解析)新人教A版选修_第4页
高中数学课时提升作业十四2.2.2.2双曲线方程及性质的应用(含解析)新人教A版选修_第5页
资源描述:

《高中数学课时提升作业十四2.2.2.2双曲线方程及性质的应用(含解析)新人教A版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时提升作业十四双曲线方程及性质的应用一、选择题(每小题5分,共25分)1.(2015·全国卷Ⅰ)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点,若·<0,则y0的取值范围是 (  )A.B.C.D.【解析】选A.因为F1(-,0),F2(,0),-=1,所以·=(--x0,-y0)·(-x0,-y0)=+-3<0,即3-1<0,解得-

2、(2,0)在双曲线含焦点的区域内,故只有当直线l与渐近线平行时才会与双曲线只有一个交点,故这样的直线只有两条.【补偿训练】过双曲线x2-=1的右焦点作直线与双曲线交于A,B两点,若

3、AB

4、=16,这样的直线有 (  )A.一条   B.两条C.三条D.四条【解析】选C.过右焦点且垂直于x轴的弦长为16,因为

5、AB

6、=16,所以当l与双曲线的两交点都在右支上时只有一条.又因为实轴长为2,16>2,所以当l与双曲线的两交点在左、右两支上时应该有两条,共三条.3.(2016·泉州高二检测)若曲线C上存在点M,使M到平面内两点A(-5,0),B(5,0)距离之差为8,则称曲线C为“好曲线”.以下

7、曲线不是“好曲线”的是 (  )A.x+y=5B.x2+y2=9C.+=1D.x2=16y【解析】选B.因为M到平面内两点A(-5,0),B(5,0)距离之差为8,所以M的轨迹是以A(-5,0),B(5,0)为焦点的双曲线的右支,方程为-=1(x≥4),A:直线x+y=5过点(5,0)满足题意;B:x2+y2=9的圆心为(0,0),半径为3,与M的轨迹没有交点,不满足题意;C:+=1的右顶点(5,0),满足题意;D:方程代入-=1,可得y-=1,即y2-9y+9=0,所以y=3,满足题意.4.(2016·青岛高二检测)过双曲线-=1(a>0,b>0)的右顶点A作斜率为-1的直线,该直线与

8、双曲线的两条渐近线的交点分别为B,C.若=,则双曲线的离心率是 (  )A.B.C.D.【解析】选C.右顶点为A(a,0),则直线方程为x+y-a=0,可求得直线与两渐近线的交点坐标B,C,则=,=.又2=,所以2a=b,所以e=.【补偿训练】已知F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1作垂直于x轴的直线交双曲线于A,B两点.若△ABF2为直角三角形,则双曲线的离心率为 (  )A.1+B.1±C.D.±1【解析】选A.因为△ABF2是直角三角形,所以∠AF2F1=45°,

9、AF1

10、=

11、F1F2

12、,=2c.所以b2=2ac,所以c2-a2=2ac,所以e2-2e

13、-1=0.解得e=1±.又e>1,所以e=1+.5.(2016·沈阳高二检测)已知双曲线E的中心在原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB中点为N(-12,-15),则E的方程为 (  )A.-=1B.-=1C.-=1D.-=1【解析】选B.由已知条件易得直线l的斜率k==1,设双曲线方程为-=1(a>0,b>0),A(x1,y1),B(x2,y2),则-=1,-=1,两式相减并结合x1+x2=-24,y1+y2=-30得=,从而=1,又因为a2+b2=c2=9,故a2=4,b2=5,所以E的方程为-=1.【拓展延伸】解决与双曲线弦的中点有关问题的两种方法(

14、1)根与系数的关系法:联立直线方程和双曲线方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决.(2)点差法:利用端点在曲线上,坐标满足方程,将端点坐标分别代入双曲线方程,然后作差,构造出中点坐标和斜率的关系,可求斜率k=.这是解决与中点有关问题的简便而有效的方法.求弦中点轨迹问题,此方法依然有效.二、填空题(每小题5分,共15分)6.(2016·济南高二检测)已知双曲线-=1(a>0,b>0)和椭圆+=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为      .【解析】由题意知,椭圆的焦点坐标是(±,0),离心率是.故在双曲线中c=,

15、e==,故a=2,b2=c2-a2=3,故所求双曲线的方程是-=1.答案:-=17.已知双曲线C:-=1(a>0,b>0)的右焦点为F,过F且斜率为的直线交双曲线C于A,B两点.若=4,则双曲线C的离心率为    .【解析】设A,B两点坐标分别为(x1,y1),(x2,y2),由得(b2-3a2)y2+2b2cy+3b4=0,因为b2-3a2≠0,所以y1+y2=,y1y2=,由=4得y1=-4y2,所以-3y2=,-4=,所以y2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。