2018-2019高中数学 第三讲 柯西不等式与排序不等式复习学案 新人教A版选修4-5

2018-2019高中数学 第三讲 柯西不等式与排序不等式复习学案 新人教A版选修4-5

ID:45526488

大小:44.12 KB

页数:4页

时间:2019-11-14

2018-2019高中数学 第三讲 柯西不等式与排序不等式复习学案 新人教A版选修4-5_第1页
2018-2019高中数学 第三讲 柯西不等式与排序不等式复习学案 新人教A版选修4-5_第2页
2018-2019高中数学 第三讲 柯西不等式与排序不等式复习学案 新人教A版选修4-5_第3页
2018-2019高中数学 第三讲 柯西不等式与排序不等式复习学案 新人教A版选修4-5_第4页
资源描述:

《2018-2019高中数学 第三讲 柯西不等式与排序不等式复习学案 新人教A版选修4-5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三讲柯西不等式与排序不等式一、知识梳理二、题型、技巧归纳题型一、利用柯西不等式证明简单不等式柯西不等式形式优美、结构易记,因此在解题时,根据题目特征灵活运用柯西不等式,可证明一些简单不等式.例1已知a,b,c是实数,且a+b+c=1,求证:++≤4.[再练一题]1.设a,b,x,y都是正数,且x+y=a+b,求证:+≥.题型二、排序原理在不等式证明中的应用应用排序不等式的技巧在于构造两个数组,而数组的构造应从需要入手来设计,这一点应从所要证的式子的结构观察分析,再给出适当的数组.例2已知a,b,c为正实数,求证:a+b+c≤++.[再练一题]2.设a,b,c∈R+,求证:a5

2、+b5+c5≥a3bc+b3ac+c3ab.题型三、利用柯西不等式、排序不等式求最值有关不等式的问题往往要涉及到对式子或量的范围的限制,柯西不等式、排序不等式为我们通过不等式求最值提供了新的有力工具,但一定要注意取等号的条件能否满足.例3 设a,b,c为正实数,且a+2b+3c=13,求++的最大值.[再练一题]3.已知实数a,b,c,d,e满足a2+b2+c2+d2+e2=16.求a+b+c+d+e的最大值.三、随堂检测1.已知关于x的不等式

3、x+a

4、

5、20,b>0,c>0,函数f(x)=

6、x

7、+a

8、+

9、x-b

10、+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值.3.已知x>1,y>1,且lgx+lgy=4,那么lgx·lgy的最大值是(  )A.2      B.      C.      D.44.已知a,b∈R+,且a+b=1,则(+)2的最大值是(  )A.2B.C.6D.125.数列{an}的通项公式an=,则数列{an}中的最大项是(  )A.第9项B.第8项和第9项C.第10项D.第9项和第10项参考答案1.【解】 (1)由

11、x+a

12、

13、)max=4.2.【解】 (1)因为f(x)=

14、x+a

15、+

16、x-b

17、+c≥

18、(x+a)-(x-b)

19、+c=

20、a+b

21、+c,当且仅当-a≤x≤b时,等号成立.又a>0,b>0,所以

22、a+b

23、=a+b,所以f(x)的最小值为a+b+c.又已知f(x)的最小值为4,所以a+b+c=4.(2)由(1)知a+b+c=4,由柯西不等式,得(4+9+1)≥2=(a+b+c)2=16,即a2+b2+c2≥.当且仅当==,即a=,b=,c=时等号成立,故a2+b2+c2的最小值是.3.【解析】 ∵4=lgx+lgy≥2,∴lgx·lgy≤4.【答案】 D4.【解析】 (+)2=(1×+1×)2≤

24、(12+12)(4a+1+4b+1)=2[4(a+b)+2]=2×(4×1+2)=12,当且仅当=,即a=b=时等号成立.故选D.【答案】 D5.【解析】 an==≤=,当且仅当n=,即n=3时等号成立.又n∈N+,检验可知选D.【答案】 D

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。