2019-2020年高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式同步配套教学案新人教A版选修4

2019-2020年高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式同步配套教学案新人教A版选修4

ID:45515593

大小:176.30 KB

页数:8页

时间:2019-11-14

2019-2020年高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式同步配套教学案新人教A版选修4_第1页
2019-2020年高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式同步配套教学案新人教A版选修4_第2页
2019-2020年高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式同步配套教学案新人教A版选修4_第3页
2019-2020年高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式同步配套教学案新人教A版选修4_第4页
2019-2020年高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式同步配套教学案新人教A版选修4_第5页
资源描述:

《2019-2020年高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式同步配套教学案新人教A版选修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学第三讲柯西不等式与排序不等式二一般形式的柯西不等式同步配套教学案新人教A版选修4             对应学生用书P32名称形式等号成立条件三维形式柯西不等式设a1,a2,a3,b1,b2,b3∈R,则(a+a+a)(b+b+b)≥(a1b1+a2b2+a3b3)2当且仅当b1=b2=b3=0或存在一个实数k使得ai=kbi(i=1,2,3)一般形式柯西不等式设a1,a2,a3,…,an,b1,b2,b3,…,bn是实数,则(a+a+…+a)·(b+b+…+b)≥(a1b1+a2b2+…+anbn)2当且仅当bi=0(

2、i=1,2,…,n)或存在一个实数k,使得ai=kbi(i=1,2,…,n)[说明] 一般形式的柯西不等式是二维形式、三维形式、四维形式的柯西不等式的归纳与推广,其特点可类比二维形式的柯西不等式来总结,左边是平方和的积,右边是积的和的平方.在使用时,关键是构造出符合柯西不等式的结构形式.             对应学生用书P32利用柯西不等式证明不等式[例1] 设x1,x2,…,xn都是正数,求证:++…+≥.[思路点拨] 根据一般柯西不等式的特点,构造两组数的积的形式,利用柯西不等式证明.[证明] ∵(x1+x2+…+xn)=[(1)2+()2+

3、…+()2]≥2=n2,∴++…+≥.柯西不等式的结构特征可以记为:(a1+a2+…+an)·(b1+b2+…+bn)≥(++…+)2.其中ai,bi∈R+(i=1,2,…,n),在使用柯西不等式时要善于从整体上把握柯西不等式的结构特征,正确地配凑出公式两侧的数是解决问题的关键.1.已知a,b,c,d∈R+,且a+b+c=1,求证:++≤3.证明:根据柯西不等式,有(++)2≤(1+1+1)(3a+1+3b+1+3c+1)=18,∴++≤3.利用柯西不等式求最值[例2] (1)已知x,y,z∈R+,且x+y+z=1.求++的最小值.(2)设2x+3y

4、+5z=29.求函数μ=++的最大值.[思路点拨] (1)利用++=(x+y+z).(2)利用(++)2=1×+1×+1×)2.[解] (1)∵x+y+z=1,∴++=(x+y+z)≥2=(1+2+3)2=36.当且仅当x==,即x=,y=,z=时取等号.所以++的最小值为36.(2)根据柯西不等式,有(·1+·1+·1)2≤[(2x+1)+(3y+4)+(5z+6)]·(1+1+1)=3×(2x+3y+5z+11)=3×40=120.故++≤2,当且仅当2x+1=3y+4=5z+6,即x=,y=,z=时等号成立.此时μmax=2.利用柯西不等式求最

5、值时,关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件.2.设a,b,c,d均为正实数,则(a+b+c+d)·的最小值为________.解析:(a+b+c+d)·=[()2+()2+()2+()2]·≥2=(1+1+1+1)2=42=16,当且仅当a=b=c=d时取等号.答案:163.已知:x,y,z∈R+且x+y+z=2,则+2+的最大值为(  )A.2     B.2C.4D.5解析:∵(+2+)2=(1×+2+·)2≤(12+22+()2)[()2+()2+()2]=8(x+y+z)=16..∴+2+≤4.答案:C4

6、.把一根长为12m的细绳截成三段,各围成三个正方形.问:怎样截法,才能使围成的三个正方形面积之和S最小,并求此最小值.解:设三段绳子的长分别为x,y,z,则x+y+z=12,三个正方形的边长分别为,,均为正数,三个正方形面积之和:S=2+2+2=(x2+y2+z2).∵(12+12+12)(x2+y2+z2)≥(x+y+z)2=122,即x2+y2+z2≥48.从而S≥×48=3.当且仅当==时取等号,又x+y+z=12,∴x=y=z=4时,Smin=3.故把绳子三等分时,围成的三个正方形面积之和最小,最小面积为3m2.             对应

7、学生用书P331.若a,b,c∈R+,且++=1,则a+2b+3c的最小值为(  )A.9B.3C.D.6解析:柯西不等式得a+2b+3c=(a+2b+3c)≥(1+1+1)2=9,∴a+2b+3c的最小值为9.答案:A2.已知a+a+…+a=1,x+x+…+x=1,则a1x1+a2x2+…+anxn的最大值是(  )A.1B.2C.3D.4解析:(a1x1+a2x2+…+anxn)2≤(a+a+…+a)(x+x+…+x)=1×1=1,当且仅当==…==1时取等号.∴a1x1+a2x2+…+anxn的最大值是1.答案:A3.已知a2+b2+c2+d2

8、=5,则ab+bc+cd+ad的最小值为(  )A.5B.-5C.25D.-25解析:(ab+bc+cd+d

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。