欢迎来到天天文库
浏览记录
ID:29151309
大小:3.64 MB
页数:5页
时间:2018-12-17
《高中数学第三讲柯西不等式与排序不等式一二维形式的柯西不等式学案新人教a版选修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一 二维形式的柯西不等式1.认识柯西不等式的几种不同形式,理解其几何意义.2.通过运用柯西不等式分析解决一些简单问题.1.二维形式的柯西不等式(1)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥__________,当且仅当______时,等号成立.(2)二维形式的柯西不等式的推论:(a+b)(c+d)≥________________(a,b,c,d为非负实数);·≥________(a,b,c,d∈R);·≥________(a,b,c,d∈R).【做一做1】已知a,b∈R+,且a+b=
2、1,则(+)2的最大值是( )A.2B.C.6D.122.柯西不等式的向量形式设α,β是两个向量,则
3、α·β
4、≤__________,当且仅当β是________,或存在实数k,使α=kβ时,等号成立.【做一做2】设a=(-2,1,2),
5、b
6、=6,则a·b的最小值为__________,此时b=__________.3.二维形式的三角不等式(1)设x1,y1,x2,y2∈R,那么+≥__________________.(2)推论:+≥____________________,(x1,x2,x3,y
7、1,y2,y3∈R).解决柯西不等式的应用问题,关键是把原有式子巧妙地转化为柯西不等式的形式.答案:1.(1)(ac+bd)2 ad=bc (2)(+)2
8、ac+bd
9、
10、ac
11、+
12、bd
13、【做一做1】 D (+)2=(1×+1×)2≤(12+12)(4a+1+4b+1)=2[4(a+b)+2]=2×(4×1+2)=12,当且仅当=,即a=b=时等号成立.2.
14、α
15、
16、β
17、 零向量【做一做2】 -18 (4,-2,-4) 根据柯西不等式的向量形式,有
18、a·b
19、≤
20、a
21、·
22、b
23、,∴
24、a·b
25、≤×6=18,当
26、且仅当存在实数k,使a=kb时,等号成立.∴-18≤a·b≤18.∴a·b的最小值为-18,此时b=-2a=(4,-2,-4).3.(1) (2)1.对柯西不等式的理解剖析:柯西不等式的几种形式,都涉及对不等式的理解与记忆,因此,二维形式的柯西不等式可以理解为四个有顺序的数来对应的一种不等关系,或构造成一个不等式,如基本不等式是由两个数来构造的,但怎样构造要仔细体会.(a2+b2)(c2+d2)≥(ac+bd)2,(a2+b2)(d2+c2)≥(ad+bc)2,谁与谁组合、联系,要有一定的认识.“二维”
27、是由向量的个数来说的,在平面上一个向量有两个量:横纵坐标,因此“二维”就要有四个量,还可以认为是四个数组合成的一种不等关系.2.柯西不等式取“=”的条件剖析:柯西不等式取“=”的条件,也不易记住,我们可以多方面联系来记忆,如(a2+b2)(c2+d2)≥(ac+bd)2,取“=”的条件是“ad=bc”,有点像a,b,c,d成等比时,ad=bc的结论,a,b,c,d的顺序不等式中是对应排列顺序的,柯西不等式的向量形式中
28、α·β
29、≤
30、α
31、
32、β
33、,取“=”的条件是β=0或存在实数k,使α=kβ.我们可以从向量
34、的数量积的角度来理解和记忆.题型一柯西不等式等号成立的条件【例1】求证:点P(x0,y0)到直线Ax+By+C=0的距离为d=.反思:利用二维形式的柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,取“=”的条件是ad=bc.因此,在解题时,对照柯西不等式,必须弄清要求的问题中相当于柯西不等式中的“a,b,c,d”的数或代数式,否则容易出错.题型二利用柯西不等式证明某些不等式【例2】设a,b∈R+,且a+b=2.求证:+≥2.分析:利用柯西不等式前,需要观察不等式的结构特点,本题可以看作求+的最
35、小值,因而需出现(a2+b2)(c2+d2)结构.把+视为其中的一个括号内的部分,另一部分可以是(2-a)+(2-b).反思:利用柯西不等式证明某些不等式时,有时需要将数学表达式适当的变形.这种变形往往要求具有很高的技巧,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口.答案:【例1】 证明:设Q(x,y)是直线上任意一点,则Ax+By+C=0.因为
36、PQ
37、2=(x-x0)2+(y-y0)2,A2+B2≠0.由柯西不等式,得
38、(A2+B2)[(x-x0)2+(y-y0)2]≥[A(x-x0)+B(y-y0)]2=[(Ax+By)-(Ax0+By0)]2=(Ax0+By0+C)2,所以
39、PQ
40、≥.当且仅当==-时,取等号.由垂线段最短,得d=.因此,点P(x0,y0)到直线Ax+By+C=0的距离为d=.【例2】 证明:根据柯西不等式,有[(2-a)+(2-b)](+)=[()2+()2][()2+()2]≥(·+·)2=(a+b)2=4.∴+≥=2.当且仅当·=
此文档下载收益归作者所有