2019-2020年高中数学第一章导数及其应用1.1.2导数的概念教案新人教A版选修

2019-2020年高中数学第一章导数及其应用1.1.2导数的概念教案新人教A版选修

ID:45511834

大小:93.80 KB

页数:8页

时间:2019-11-14

2019-2020年高中数学第一章导数及其应用1.1.2导数的概念教案新人教A版选修_第1页
2019-2020年高中数学第一章导数及其应用1.1.2导数的概念教案新人教A版选修_第2页
2019-2020年高中数学第一章导数及其应用1.1.2导数的概念教案新人教A版选修_第3页
2019-2020年高中数学第一章导数及其应用1.1.2导数的概念教案新人教A版选修_第4页
2019-2020年高中数学第一章导数及其应用1.1.2导数的概念教案新人教A版选修_第5页
资源描述:

《2019-2020年高中数学第一章导数及其应用1.1.2导数的概念教案新人教A版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学第一章导数及其应用1.1.2导数的概念教案新人教A版选修教学目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数。教学重点:瞬时速度、瞬时变化率的概念、导数的概念;教学难点:导数的概念.(一)、情景引入,激发兴趣【教师引入】:“生活中有一些现象值得我们去研究,比如,子弹离开枪管那一瞬间的速度,奥运会上百米赛跑运动员冲向终点那一时刻的速度。科学上对瞬时速度的研究也是非常有必要的,比如在天宫一

2、号与神州八号的成功对接,最关键的就是它们每个瞬间的速度都相等。(二)、探究新知,揭示概念教学环节内容师生活动设计意图复习引入提出问题【回顾1】当运动员从10米高台跳水时,从腾空到进入水面的过程中,不同时刻的速度是不同的.假设t秒后运动员相对地面的高度为:,问在2秒时运动员的瞬时速度为多少?【回顾2】已知曲线C是函数的图象,求曲线上点P处的切线斜率.【思考】对瞬时速度和和切线的斜率两个具体问题,解决方法上有什么共同之处?学生相互交流探讨瞬时速度和和切线的斜率两个具体问题,解决方法上有什么共同之处.针

3、对新概念创设相应的学生熟悉的问题情景,让学生从概念的现实原型,体验、感受直观背景和概念间的关系,为学生主动建构新知提供自然的生长点.①归纳共性揭示本质类比探索形成概念研究对象求解问题求解方法本质思想具体例子物体运动规律H=h(t)物体在时的瞬时速度求时间增量求位移增量求平均速度求瞬时速度平均速度的极限极限思想曲线y=f(x)曲线上P点处切线的斜率求横坐标增量求纵坐标增量求割线的斜率求切线的斜率割线斜率的极限极限思想一般情形函数y=f(x)函数在处的变化率??????【师生活动】将学生分成若干学习小

4、组,以表格为载体为师生、生生互动搭起积极交流的探究平台.教师巡视,鼓励学生参与,对个别学有困难的小组加以指导.探究后,共同归纳得出:两个问题的解决在方法、本质、思想上都有相同之处.一个是“位移改变量与时间改变量之比”的极限,一个是“纵坐标改变量与横坐标改变量之比”的极限.如果舍去它们的具体含义,都可以概括为求平均变化率的极限.【设计意图】给学生创设探究的平台,分析瞬时速度和切线的斜率两个具体问题,讨论解决这两个问题的方法、本质、思想上有什么共同之处,引导学生分析、观察、归纳,打通揭示事物本质的思维

5、通道.教学环节内容师生活动设计意图类②类比迁移形成概念【思考】考虑求一般函数y=f(x)在点到+之间的平均变化率的极限问题,也就是怎样计算函数在点处的变化率?引导学生利用求瞬时速度的方法和思想类比探究,猜想得出函数在点处的变化率比探索形成概念引出导数定义后,回归问题情景,反思概念的“原型”解释“切线的斜率”、“物体的瞬时速度”的本质.=,并对猜想的合理性进行分析后,引出定义1:(函数在一点处可导及其导数)用具体到抽象,特殊到一般的思维方式,利用瞬时速度进行类比迁移,自然引出函数在一点处可导和导数的

6、概念.由具体到抽象再回到具体的过程,感知上升到了理性,强化了对概念的理解.类比探索形③剖析概念加深理解【探讨1】怎样判断函数在一点是否可导?判断函数在点处是否可导转化判断极限是否存在【探讨2】导数是什么?描述角度本质文字语言瞬时变化率符号语言组织学生阅读“导数”定义,抓住定义中的关键词“可导”与“导数”交流探讨,然后通过师生互动挖掘这些概念之间的深层含义.引导学生以数学语言(文字语言、符号语言成概念图形语言(切线斜率)分析导数的本质后,同时简单提及导数产生的时代背景.、图形语言)的理解、把握、运用

7、为切入点去揭示概念的内涵与外延,提高学生数学阅读和自主学习的能力.让学生感受数学文化的熏陶,了解导数的文化价值、科学价值和应用价值.教学环节内容师生活动设计意图类比探索形成概念【探讨3】求导数的方法是什么?【例1】求函数y=x2在点处的导数.让学生类比瞬时速度的问题,根据导数定义归纳出求函数在点处导数的方法步骤:(1)求函数的增量;(2)求平均变化率;(3)取极限,得导数.学生动手解答,老师强调符号语言的规范使用,对诸如忘写括号的现象加以纠正.用定义法求导数是本课的重点之一.有了可导这个逻辑基础,

8、导数成为可导的自然结果,求导数的方法则是对导数概念的理解与应用.让学生积极主动参与,进行有意义的建构,有利于重点知识的掌握.本题是教材上的一道例题.在学生建立起导数概念,明确用定义求导数的方法之后,进行强化训练,渗透算法思想,加深对导数概念的理解,强化对重点知识的巩固.引申拓展发展概念利用例1继续设问,函数在处可导,那么,,这些点也可导吗?从而引申拓展出定义2:(函数在开区间内可导)【探讨1】函数在开区间内可导,那么对于每一个确定的值,都有唯一确定的导数值与之相对应,这样在开区间内

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。