2019-2020年高中数学第1章集合与函数概念1.3.1单调性与最大(小)值第1课时函数的单调性课时作业新人教A版必修

2019-2020年高中数学第1章集合与函数概念1.3.1单调性与最大(小)值第1课时函数的单调性课时作业新人教A版必修

ID:45509952

大小:235.30 KB

页数:5页

时间:2019-11-14

2019-2020年高中数学第1章集合与函数概念1.3.1单调性与最大(小)值第1课时函数的单调性课时作业新人教A版必修_第1页
2019-2020年高中数学第1章集合与函数概念1.3.1单调性与最大(小)值第1课时函数的单调性课时作业新人教A版必修_第2页
2019-2020年高中数学第1章集合与函数概念1.3.1单调性与最大(小)值第1课时函数的单调性课时作业新人教A版必修_第3页
2019-2020年高中数学第1章集合与函数概念1.3.1单调性与最大(小)值第1课时函数的单调性课时作业新人教A版必修_第4页
2019-2020年高中数学第1章集合与函数概念1.3.1单调性与最大(小)值第1课时函数的单调性课时作业新人教A版必修_第5页
资源描述:

《2019-2020年高中数学第1章集合与函数概念1.3.1单调性与最大(小)值第1课时函数的单调性课时作业新人教A版必修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学第1章集合与函数概念1.3.1单调性与最大(小)值第1课时函数的单调性课时作业新人教A版必修课时目标 1.理解函数单调性的性质.2.掌握判断函数单调性的一般方法.1.函数的单调性一般地,设函数f(x)的定义域为I:(1)如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1f(

2、x2),那么就说函数f(x)在区间D上是__________.(3)如果函数y=f(x)在区间D上是________或________,那么就说函数y=f(x)在这一区间具有________________,区间D叫做y=f(x)的__________.2.a>0时,二次函数y=ax2的单调增区间为________.3.k>0时,y=kx+b在R上是____函数.4.函数y=的单调递减区间为__________________.一、选择题1.定义在R上的函数y=f(x+1)的图象如右图所示.给出如下命题:①

3、f(0)=1;②f(-1)=1;③若x>0,则f(x)<0;④若x<0,则f(x)>0,其中正确的是(  )A.②③B.①④C.②④D.①③2.若(a,b)是函数y=f(x)的单调增区间,x1,x2∈(a,b),且x1f(x2)D.以上都可能3.f(x)在区间[a,b]上单调,且f(a)·f(b)<0,则方程f(x)=0在区间[a,b]上(  )A.至少有一个根B.至多有一个根C.无实根D.必有唯一的实根4.函数y=x2

4、-6x+10在区间(2,4)上是(  )A.递减函数B.递增函数C.先递减再递增D.先递增再递减5.如果函数f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),则下列结论中不正确的是(  )A.>0B.(x1-x2)[f(x1)-f(x2)]>0C.f(a)06.函数y=的单调递减区间为(  )A.(-∞,-3]B.(-∞,-1]C.[1,+∞)D.[-3,-1]题 号123456答 案二、填空题7.设函数f(x)是R上的减函数,若f(m-

5、1)>f(2m-1),则实数m的取值范围是______________.8.函数f(x)=2x2-mx+3,当x∈[2,+∞)时是增函数,当x∈(-∞,2]时是减函数,则f(1)=________.三、解答题9.画出函数y=-x2+2

6、x

7、+3的图象,并指出函数的单调区间.10.已知f(x),g(x)在(a,b)上是增函数,且a

8、实数m,n总有f(m+n)=f(m)·f(n),且当x>0时,0

9、)上都是减函数,但不能说函数f(x)=在定义域上是减函数.3.求单调区间的方法:(1)图象法;(2)定义法;(3)利用已知函数的单调性.4.用单调性的定义证明函数的单调性分四个主要步骤:即“取值——作差变形——定号——判断”这四个步骤.若f(x)>0,则判断f(x)的单调性可以通过作比的方法去解决,即“取值——作比变形——与1比较——判断”.§1.3 函数的基本性质1.3.1 单调性与最大(小)值第1课时 函数的单调性知识梳理1.(1)增函数 (2)减函数 (3)增函数 减函数 (严格的)单调性 单调区间 

10、2.[0,+∞) 3.增 4.(-∞,0)和(0,+∞)作业设计1.B2.A [由题意知y=f(x)在区间(a,b)上是增函数,因为x2>x1,对应的f(x2)>f(x1).]3.D [∵f(x)在[a,b]上单调,且f(a)·f(b)<0,∴①当f(x)在[a,b]上单调递增,则f(a)<0,f(b)>0,②当f(x)在[a,b]上单调递减,则f(a)>0,f(b)<0,由①②知f(x)在区间[a,b]上必有x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。