2019-2020年高考数学 7.4 直线、平面平行的判定及其性质练习

2019-2020年高考数学 7.4 直线、平面平行的判定及其性质练习

ID:45503498

大小:389.00 KB

页数:5页

时间:2019-11-14

2019-2020年高考数学 7.4 直线、平面平行的判定及其性质练习_第1页
2019-2020年高考数学 7.4 直线、平面平行的判定及其性质练习_第2页
2019-2020年高考数学 7.4 直线、平面平行的判定及其性质练习_第3页
2019-2020年高考数学 7.4 直线、平面平行的判定及其性质练习_第4页
2019-2020年高考数学 7.4 直线、平面平行的判定及其性质练习_第5页
资源描述:

《2019-2020年高考数学 7.4 直线、平面平行的判定及其性质练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高考数学7.4直线、平面平行的判定及其性质练习(25分钟 60分)一、选择题(每小题5分,共25分)1.(xx·揭阳模拟)设平面α,β,直线a,b,a⊂α,b⊂α,则“a∥β,b∥β”是“α∥β”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.因为“a∥β,b∥β”若a∥b,则α与β不一定平行,反之若“α∥β”,则一定有“a∥β,b∥β”,故选B.2.在空间中,下列命题正确的是(  )A.平行直线在同一平面内的射影平行或重合B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.

2、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【解析】选C.A中两直线的射影可能是两个点,所以A错;一个平面上的三点到另一个平面的距离相等,则这两个平面平行或相交,故B错;若两个平面垂直同一个平面,则这两个平面可以平行,也可以相交,故D错;只有选项C正确.3.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是(  )A.①②   B.①④   C.②③   D.③④【解析】选A.由线面平行的判定定理知①②可得出AB∥平面MNP.4.(

3、xx·成都模拟)如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则(  )A.BD∥平面EFGH,且四边形EFGH是矩形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形【解题提示】先由条件得EFBD,再证得EF∥平面BCD,进而判断EFGH形状.【解析】选B.由AE∶EB=AF∶FD=1∶4知EFBD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HGBD,所以EF∥HG且E

4、F≠HG.所以四边形EFGH是梯形.5.(xx·杭州模拟)已知a,b表示不同的直线,α,β表示不同的平面,则下列命题正确的是(  )A.若a∥α,b∥β,α∥β,则a∥bB.若a∥b,a⊂α,b⊂β,则α∥βC.若a∥b,α∩β=a,则b∥α或b∥βD.若直线a与b异面,a⊂α,b⊂β,则α∥β【解析】选C.A:a与b还可能相交或异面,此时a与b不平行,故A不正确;B:α与β可能相交,此时设α∩β=m,则a∥m,b∥m,故B不正确;D:α与β可能相交,如图所示,故D不正确.二、填空题(每小题5分,共15分)6.已知正方体ABCD-A1B1C1D1,下列结论中

5、正确的是    (只填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.【解析】由四边形ABC1D1是平行四边形可知AD1∥BC1,故①正确;根据线面平行与面面平行的判定定理可知,②④正确;AD1与DC1是异面直线,故③错.答案:①②④7.(xx·日照模拟)如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=     .【解析】如图,连接AC,易知MN∥平面ABCD,所

6、以MN∥PQ.因为MN∥AC,所以PQ∥AC.又因为AP=,所以===,所以PQ=AC=·a=a.答案:a8.(xx·北京模拟)设α,β,γ是三个不同平面,a,b是两条不同直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且    ,则a∥b”为真命题,则可以在横线处填入的条件是    (把所有正确的题号填上).【解题提示】逐个命题进行验证,从中作出判断.【解析】①可以,由a∥γ得a与γ没有公共点,由b⊂β,α∩β=a,b⊂γ知,a,b在面β内,且没有公共点,故平行.②a∥γ,b∥β,不可以.举出反例如

7、下:使β∥γ,b⊂γ,a⊂β,则此时能有a∥γ,b∥β,但不一定a∥b.这些条件无法确定两直线的位置关系.③b∥β,a⊂γ,可以,由b∥β,α∩β=a知,a,b无公共点,再由a⊂γ,b⊂γ,可得两直线平行.答案:①③三、解答题(每小题10分,共20分)9.如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?【解析】当Q为CC1的中点时,平面D1BQ∥平面PAO.证明如下:因为Q为CC1的中点,P为DD1的中点,所以QB∥PA.因为P,O分别为DD1,DB的

8、中点,所以D1B∥PO.又因为D1B⊄平面PAO,P

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。