欢迎来到天天文库
浏览记录
ID:45367075
大小:193.80 KB
页数:8页
时间:2019-11-12
《2019-2020年九年级上学期期中质量检测数学试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年九年级上学期期中质量检测数学试题②可以携带使用科学计算器,并注意运用计算器进行估算和探究;③未注明精确度、保留有效数字等的计算问题不得采取近似计算.★参考公式:抛物线的对称轴是,顶点坐标一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.将图1按顺时针方向旋转90°后得到的是2.下列方程中是一元二次方程的是A.B.C.D.第3题3.如图,已知点A、B、C在⊙O上,∠AOB=100°,则∠ACB的度数是A.50°B.80°C.100°D.20
2、0°4.下列美丽的图案,既是轴对称图形又是中心对称图形的是 A.B.C.D.5.一元二次方程的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.已知⊙O的半径为10cm,如果圆心O到一条直线的距离为10cm,那么这条直线和这个圆的位置关系为A.相离B.相切C.相交D.无法确定7.将抛物线向左平移2个单位,再向下平移1个单位,则所得的抛物线的解析式为A.B.C.D.8.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是A.5个B.6个
3、C.7个D.8个9.一个运动员打高尔夫球,若球的飞行高度与水平距离之间的函数表达式为,则高尔夫球在飞行过程中的最大高度为A.10mB.20mC.30mD.60m10.方程是关于的一元二次方程,则的值为A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.点A(-2,3)与点是关于原点O的对称点,则坐标是.12.二次函数的顶点坐标是.13.已知关于的一元二次方程的一个根是2,则=___.14.如图所示,四边ABCD是圆的内接四边形,若∠ABC=50°则∠ADC=.15.
4、如图所示,在小正方形组成的网格中,图②是由图①经过旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”).第15题第16题第14题16.如图所示,一个油管的横截面,其中油管的半径是5cm,有油的部分油面宽AB为8cm,则截面上有油部分油面高CD为___cm.OMBA17题17.如图,用等腰直角三角板画∠AOB=450,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转,则三角板的斜边与射线OA的夹角为__________________.18.一列数,,,…,其中,(为大于1的整数),则.三、解答
5、题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.(1)(7分).(2)(7分)先化简,再求值:,其中.20.(8分)解方程:.21.(8分)已知:如图,在⊙O中,弦AB=CD,那么∠AOC和∠BOD相等吗?请说明理由.22.(10分)如图,在平面直角坐标系中,△ABC的三个顶都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出关于轴对称的,并写出点的坐标.(2)画出绕原点O旋转180°后得到的,并写出点的坐标.23.(10分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动
6、商城的自行车销售量自xx年起逐月增加,据统计,xx年该商城1月份销售自行车64辆,3月份销售了100辆.(1)求1月到3月自行车销量的月平均增长率;(2)若按照(1)中自行车销量的增长速度,问该商城4月份能卖出多少辆自行车?24.(10分)已知:如图已知点P是⊙O外一点,PO交圆O于点C,OC=CP=2,点B在⊙O上,∠OCB=600,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.25.(12分)已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=1200,∠MBN=600,将∠MBN绕
7、点B旋转.当∠MBN旋转到如图的位置,此时∠MBN的两边分别交AD、DC于E、F,且AE≠CF.延长DC至点K,使CK=AE,连接BK.求证:(1)△ABE≌△CBK;(2)∠KBC+∠CBF=600;(3)CF+AE=EF.26.(14分)如图,在平面直角坐标系中,A(0,2),B(-1,0),Rt△AOC的面积为4.(1)求点C的坐标;(2)抛物线经过A、B、C三点,求抛物线的解析式和对称轴;(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标
8、.备用图武夷山市xx学年第一学期九年级期中考试数学试题参考答案及评分说明说明:1.解答右端所注分数,表示考生正确作完该步应得的累计分数,全卷满分150分.2.对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有
此文档下载收益归作者所有