2019-2020年高中数学 解三角形练习题1 北师大版必修5

2019-2020年高中数学 解三角形练习题1 北师大版必修5

ID:45346828

大小:250.30 KB

页数:10页

时间:2019-11-12

2019-2020年高中数学 解三角形练习题1 北师大版必修5_第1页
2019-2020年高中数学 解三角形练习题1 北师大版必修5_第2页
2019-2020年高中数学 解三角形练习题1 北师大版必修5_第3页
2019-2020年高中数学 解三角形练习题1 北师大版必修5_第4页
2019-2020年高中数学 解三角形练习题1 北师大版必修5_第5页
资源描述:

《2019-2020年高中数学 解三角形练习题1 北师大版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高中数学解三角形练习题1北师大版必修5二.【命题走向】对本讲内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。题型一般为选择题、填空题,也可能是中、难度的解答题三.【要点精讲】1.直角三角形中各元素间的关系:如图,在△ABC中,C=90°,AB=c,AC=b,BC=a。(1)三边之间的关系:a2+b2=c2。(勾股定理)(2)锐角之间的关系:A+B=90°

2、;(3)边角之间的关系:(锐角三角函数定义)sinA=cosB=,cosA=sinB=,tanA=。2.斜三角形中各元素间的关系:如图6-29,在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2=b2+c2-2bccosA;b2=c2+a2-2cacosB;c2=a2+b2-2abcosC。3.三角形的面积公式:(1)△=aha=bhb=chc(ha、hb、

3、hc分别表示a、b、c上的高);(2)△=absinC=bcsinA=acsinB;(3)△===;(4)△=2R2sinAsinBsinC。(R为外接圆半径)(5)△=;(6)△=;;(7)△=r·s。4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设△ABC的三边为

4、a、b、c,对应的三个角为A、B、C。(1)角与角关系:A+B+C=π;(2)边与边关系:a+b>c,b+c>a,c+a>b,a-bb;(3)边与角关系:正弦定理(R为外接圆半径);余弦定理c2=a2+b2-2bccosC,b2=a2+c2-2accosB,a2=b2+c2-2bccosA;它们的变形形式有:a=2RsinA,,。5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。(1)角的变换因为在△ABC中,A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-t

5、anC。;(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。r为三角形内切圆半径,p为周长之半。(3)在△ABC中,熟记并会证明:∠A,∠B,∠C成等差数列的充分必要条件是∠B=60°;△ABC是正三角形的充分必要条件是∠A,∠B,∠C成等差数列且a,b,c成等比数列。四.【典例解析】题型1:正、余弦定理(xx岳阳一中第四次月考).已知△中,,,,,,则()A..B.C.D.或答案C例1.(1)在中,已知,,cm,解三角形;(2)在中,已知cm,cm,,解三角形(角度精确到,边长精确到1cm)。解析:(1)根据三角形内角和定理,;根据正弦定理,;根据正弦定理,(2)根据正弦定理

6、,因为<<,所以,或①当时,,②当时,,点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器例2.(1)在ABC中,已知,,,求b及A;(2)在ABC中,已知,,,解三角形解析:(1)∵=cos==∴求可以利用余弦定理,也可以利用正弦定理:点评:应用余弦定理时解法二应注意确定A的取值范围。题型2:三角形面积例3.在中,,,,求的值和的面积。解法一:先解三角方程,求出角A的值。又,,。解法二:由计算它的对偶关系式的值。①,② ① + ② 得  。 ① - ② 得  。从而 。以下解法略去。点评:本小题主要考查三角

7、恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?例4.(xx湖南卷文)在锐角中,则的值等于,的取值范围为答案 2解析设由正弦定理得由锐角得,又,故,例5.(xx浙江理)(本题满分14分)在中,角所对的边分别为,且满足,.(I)求的面积;(II)若,求的值.解(1)因为,,又由得,(2)对于,又,或,由余弦定理得,例6.(xx全国卷Ⅰ理)在中,内角A、B、C的对边长分别

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。