欢迎来到天天文库
浏览记录
ID:45342443
大小:4.49 MB
页数:19页
时间:2019-11-12
《 四川省成都市实验外国语学校2019届高三二诊模拟考试数学(文科)试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、成都实外高三二诊模拟考试文科数学一、选择题.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合则()A.B.C.D.【答案】A【解析】【分析】根据两集合中元素的特征判断出两集合间的关系.【详解】由题意得,集合为奇数集合,集合为整数集合,所以.故选A.【点睛】判断两集合间的关系时,关键是分清两集合元素的特征,根据元素的特征作出判断,考查集合的元素和集合间的包含关系,属于基础题.2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】通过复数的运算求出复数的代数形式,然
2、后再进行判断即可.【详解】由题意得,所以复数在复平面内对应的点为,在第四象限.故选D.【点睛】解题的关键是将复数化为代数形式,然后再根据复数的几何意义进行判断,属于基础题.3.已知位学生得某次数学测试成绩得茎叶图如图,则下列说法正确的是()A.众数为7B.极差为19C.中位数为64.5D.平均数为64【答案】C【解析】【分析】根据茎叶图中的数据求得这组数据的众数、极差、中位数和平均数.【详解】根据茎叶图中的数据知,这组数据的众数为67,A错误;极差是75﹣57=18,B错误;中位数是64.5,C正确;平均数为60(﹣3﹣1+1+2
3、+7+7+12+15)=65,D错误.故选:C.【点睛】本题考查了利用茎叶图求众数、极差、中位数和平均数的应用问题,是基础题.4.函数的图像大致为()A.B.C.D.【答案】D【解析】【分析】先根据奇偶性淘汰A,C,再根据函数最值确定选项.【详解】因为,所以为奇函数,不选A,C,又因为,所以选D.【点睛】由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复5.等比数列
4、各项均为正数,若则的前6项和为()A.B.C.D.【答案】B【解析】【分析】利用等比数列的性质及,可得q的值,计算即可.【详解】解:等比数列各项均为正数,且,,,可得q=2或q=-4(舍去),=63,故选B.【点睛】本题考查了等比数列的性质及前n项和的公式,考查了推理能力与计算能力,属于中档题.6.已知向量与的夹角为,=2,=5,则在方向上的投影为()A.B.C.D.【答案】B【解析】【分析】先求出,再根据投影的定义可得所求结果.【详解】∵=2,=5,向量与的夹角为,∴,∴在方向上的投影为.故选B.【点睛】解答本题的关键利用投影的
5、定义求解,其中先求出两个向量的数量积是必须的步骤,考查数量积的定义和数量积的运算,属于基础题.7.设是两条直线,是两个平面,则的一个充分条件是()A.B.C.D.【答案】C【解析】试题分析:A.可能垂直也可能不垂直,平行都有可能;B.;D.可能垂直,不垂直,或是平行都有可能;C.,,那么,,那么,故C正确.考点:线线,线面,面面位置关系8.已知双曲线:的一条渐近线与直线的夹角为,若以双曲线的实轴和虚轴为对角线的四边形面积为,则双曲线的标准方程为()A.B.C.D.【答案】A【解析】因为双曲线的一条渐近线与直线的夹角为,所以双曲线的
6、渐近线方程为,所以.因为以双曲线的实轴和虚轴为对角线的四边形的面积为,所以,即.由,解得,所以双曲线的标准方程为.故选A.9.若执行如图所示的程序框图,则输出S的值为()A.B.C.D.【答案】C【解析】【分析】首先确定流程图的功能为计数的值,然后利用裂项求和的方法即可求得最终结果.【详解】由题意结合流程图可知流程图输出结果为,,.本题选择C选项.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验
7、证.10.已知则()A.B.C.D.【答案】C【解析】【分析】由题意可得,=,由的性质可得a<c,同理可得,=,由可得c<b,可得答案.【详解】解:由题意得:,=,在为单调递增函数,a<c,同理可得:,=,在R上为单调递增函数,c<b,综上,故选C.【点睛】本题主要考查利用指数函数、幂函数比较函数值的大小,需熟练掌握指数函数、幂函数的性质.11.在中,角的对边分别是若,则的最小值为()A.B.C.D.【答案】D【解析】【分析】由题意利用正弦定理化简已知等式,利用同角三角函数间基本关系可求tanA=3tanB,进而利用正弦定理,基本
8、不等式化简所求即可求解.【详解】解:∵acosB﹣bcosA,∴由正弦定理化简得:sinAcosB﹣sinBcosAsinCsin(A+B)sinAcosBcosAsinB,整理得:sinAcosB=3cosAsinB,∴cosAcosB>0,∴t
此文档下载收益归作者所有