2019-2020年高三查漏补缺试题(数学)

2019-2020年高三查漏补缺试题(数学)

ID:45162001

大小:177.50 KB

页数:14页

时间:2019-11-10

2019-2020年高三查漏补缺试题(数学)_第1页
2019-2020年高三查漏补缺试题(数学)_第2页
2019-2020年高三查漏补缺试题(数学)_第3页
2019-2020年高三查漏补缺试题(数学)_第4页
2019-2020年高三查漏补缺试题(数学)_第5页
资源描述:

《2019-2020年高三查漏补缺试题(数学)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高三查漏补缺试题(数学)说明:查漏补缺题是在海淀的五次统练基础上的补充,绝非猜题押宝,每道题的选择都有其选题意图,有的侧重知识、有的侧重方法、有的侧重题型、有的侧重选题内容,请老师根据选题意图,有所选择、有所侧重地训练学生.最后阶段的复习,应是梳理知识、梳理解题方法的基础上查漏补缺.三角函数1.在中,、、所对的边长分别是、、.满足.(1)求的大小;(2)求的最大值.命题意图:在已知边角关系中既有边又有角的等式,一般要进行边角统一,边化角常用正弦定理,角化边常用正弦、余弦定理;熟练掌握的变形;另外对于函数的图象和性质要掌握好;已知三角函数值求角时,一定要注意角的取值范围

2、,注意细节.2.已知.(1)求的对称轴方程;(2)将函数的图象按向量平移后得到函数的图象,若的图象关于点对称,求的最小值.命题意图:对于三角公式,重中之重是倍角公式、降幂公式及辅助角公式.如果三角函数解答题要求单调性、对称性、周期等,一般暗示着“化一”的过程,即通过恒等变形把函数化为;另外会从“数”和“形”两方面来分析这个函数的性质和几何特点,即以图引导思维;注意平移问题的处理,如函数平移,按向量平移,曲线的平移问题.提示:要求学生记清诱导公式,“特殊角”的三角函数值.数列1.设数列的前项和为,且满足.(Ⅰ)求证:数列为等比数列;(Ⅱ)求通项公式;(Ⅲ)设,求证:.命题意图:数列既是高中

3、数学的重点,也是难点.掌握好等差、等比数列的通项公式和前项和公式,能用概念判断是否为等差、等比数列.常见考点:与的关系(注意讨论);;递推——猜想——数学归纳法证明;迭加;迭乘;裂项求和;错位相减等;数列不等式证明中注意放缩法的运用.2.无穷数列满足:(为常数).(1)若且数列为等比数列,求;(2)已知,若,求;(3)若存在正整数,使得当时,有,求证:存在正整数,使得当时,有命题意图:数列中涉及恒成立或存在性的问题,往往和最大(小)值及单调性有关,常见做法是用和进行作差、作商、比较或构造函数来判断;通过本题的练习,希望学生能根据题目的条件和结论获取信息,抓住特点,进行代数推理论证;本题第

4、(3)问也可用反证法说明,解题中要重视它的运用.立体几何1.在直平行六面体中,是菱形,,,.(1)求证:平面;(2)求证:平面平面;(3)求直线与平面所成角的大小.命题意图:熟悉立体几何中常见问题及处理方法,要求学生敏锐把握所给图形特征,制定合理的解决问题策略.立体几何主要是两种位置关系(平行、垂直),两个度量性质(夹角、距离).解决问题的方法也有两种:几何方法和向量方法.两种方法各有优缺点,前者难在“找”和“作”的技巧性,后者难在建系和计算上,究竟用哪种方法,到时根据自己的情况决断.2.如图,二面角为直二面角,∠PCB=90°,∠ACB=90°,PM∥BC,直线AM与直线PC所成的角为

5、60°,又AC=1,BC=2,PM=1.(Ⅰ)求证:AC⊥BM;(Ⅱ)求二面角M-AB-C的正切值;(III)求点P到平面ABM的距离.命题意图:用综合法解答立体几何问题,要注意步骤的规范性,如求二面角的大小,点到面的距离,要先证明,再计算.用向量方法解答,要注意两向量的夹角与所求角的关系,即相等、互补、互余等,还要注意所求角的范围,如斜线和平面所成角一定是锐角;要注意“体积法”在处理较难的角与距离问题中的灵活运用.注意:立体几何重在通性、通法的熟练,逻辑的严谨,计算准确上.概率1.理:某自助银行共有4台ATM机,在某一时刻A、B、C、D四台ATM机被占用的概率分别为、、、,设某一时刻这

6、家自助银行被占用的ATM机的台数为(Ⅰ)如果某客户只能使用A或B型号的ATM机,求该客户需要等待的概率;(Ⅱ)求至多有三台ATM机被占用的概率;(Ⅲ)求的分布列和数学期望.命题意图:概率主要考查两个公式(加法、乘法公式)、两个模型(古典概型、贝努里概型)(可以提醒学生“摸球”问题中的放回与不放回的区别).但要注意答题的规范性,不要只列一个算术式子来解答;注意两个公式适用的条件,互斥和独立;注意两个模型的辨别;对于“至多”,“至少”问题,常用对立事件计算.2.文:某自助银行共有4台ATM机,在某一时刻A、B、C、D四台ATM机被占用的概率分别为、、、.(Ⅰ)如果某客户只能使用A或B型号的A

7、TM机,求该客户需要等待的概率;(Ⅱ)求至多有三台ATM机被占用的概率;(Ⅲ)求恰有两台ATM机被占用的概率.命题意图:概率主要考查两个公式(加法、乘法公式)、两个模型(古典概型、贝努里概型).但要注意答题的规范性,不要只列一个算术式子来解答;注意两个公式适用的条件,互斥和独立;注意两个模型的辨别;对于“至多”,“至少”问题,常用对立事件计算.3.小明一家三口都会下棋.在假期里的每一天,父母都交替与小明下三盘棋,已知小明胜父亲的概率

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。