欢迎来到天天文库
浏览记录
ID:45074122
大小:252.00 KB
页数:5页
时间:2019-11-09
《2019-2020年高考数学专题复习导练测 第八章 第2讲 空间几何体的表面积与体积 理 新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高考数学专题复习导练测第八章第2讲空间几何体的表面积与体积理新人教A版一、选择题1.棱长为2的正四面体的表面积是( ).A.B.4C.4D.16解析 每个面的面积为:×2×2×=.∴正四面体的表面积为:4.答案 C2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的( ).A.2倍B.2倍C.倍D.倍解析 由题意知球的半径扩大到原来的倍,则体积V=πR3,知体积扩大到原来的2倍.答案 B3.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm2)为( ).A.48B.64C.80D.120解析 据三视图知,该几何体是一个正四棱锥(底面边长为8),直观图如
2、图,PE为侧面△PAB的边AB上的高,且PE=5.∴此几何体的侧面积是S=4S△PAB=4××8×5=80(cm2).答案 C4.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( ).A.B.C.D.解析 在直角三角形ASC中,AC=1,∠SAC=90°,SC=2,∴SA==;同理SB=.过A点作SC的垂线交SC于D点,连接DB,因△SAC≌△SBC,故BD⊥SC,故SC⊥平面ABD,且平面ABD为等腰三角形,因∠ASC=30°,故AD=SA=,则△ABD的面积为×1×=,则三棱锥的体积为××2=.答案 A5.
3、某品牌香水瓶的三视图如下(单位:cm),则该几何体的表面积为( ).A.cm2B.cm2C.cm2D.cm2解析 该几何体的上下为长方体,中间为圆柱.S表面积=S下长方体+S上长方体+S圆柱侧-2S圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π××1-2×π2=94+.答案 C6.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为( ).A.3B.2C.D.1解析 由题可知AB一定在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,则DC=4-x,此时所求棱锥即分割成两个棱锥S-ABD和C-ABD
4、,在△SAD和△SBD中,由已知条件可得AD=BD=x,又因为SC为直径,所以∠SBC=∠SAC=90°,所以∠DCB=∠DCA=60°,在△BDC中,BD=(4-x),所以x=(4-x),所以x=3,AD=BD=,所以三角形ABD为正三角形,所以V=S△ABD×4=.答案 C二、填空题7.已知S、A、B、C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=,则球O的表面积等于________.解析 将三棱锥S-ABC补形成以SA、AB、BC为棱的长方体,其对角线SC为球O的直径,所以2R=SC=2,R=1,∴表面积为4πR2=4π.答案 4π8.如图所示,已知一个多面
5、体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为,连接顶点和底面中心即为高,可求得高为,所以体积V=×1×1×=.答案 9.已知某几何体的直观图及三视图如图所示,三视图的轮廓均为正方形,则该几何体的表面积为________.解析 借助常见的正方体模型解决.由三视图知,该几何体由正方体沿面AB1D1与面CB1D1截去两个角所得,其表面由两个等边三角形、四个直角三角形和一个正方形组成.计算得其表面积为12+4.答案 12+410.如图所示,正方体ABCD-A1B1C1D1的棱长
6、为6,则以正方体ABCD-A1B1C1D1的中心为顶点,以平面AB1D1截正方体外接球所得的圆为底面的圆锥的全面积为________.解析 设O为正方体外接球的球心,则O也是正方体的中心,O到平面AB1D1的距离是体对角线长的,即为.又球的半径是正方体对角线长的一半,即为3,由勾股定理可知,截面圆的半径为=2,圆锥底面面积为S1=π·(2)2=24π,圆锥的母线即为球的半径3,圆锥的侧面积为S2=π×2×3=18π.因此圆锥的全面积为S=S2+S1=18π+24π=(18+24)π.答案 (18+24)π三、解答题11.一个几何体的三视图如图所示.已知主视图是底边长为1的平行四边形,左视图
7、是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1×=.(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形,S=2×(1×1+1×+1×2)=6+2.12.在直三棱柱
此文档下载收益归作者所有