2019-2020年高一数学寒假作业4含答案

2019-2020年高一数学寒假作业4含答案

ID:45061841

大小:123.50 KB

页数:7页

时间:2019-11-08

2019-2020年高一数学寒假作业4含答案_第1页
2019-2020年高一数学寒假作业4含答案_第2页
2019-2020年高一数学寒假作业4含答案_第3页
2019-2020年高一数学寒假作业4含答案_第4页
2019-2020年高一数学寒假作业4含答案_第5页
资源描述:

《2019-2020年高一数学寒假作业4含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高一数学寒假作业4含答案一、选择题.1.(5分)过点(1,0)且与直线x﹣2y﹣2=0平行的直线方程是()A.x﹣2y﹣1=0B.x﹣2y+1=0C.2x+y﹣2=0D.x+2y﹣1=02.已知直线l1的方程是ax-y+b=0,l2的方程是bx-y-a=0(ab≠0,a≠b),则下列各示意图形中,正确的是()3.已知两点M(2,-3)、N(-3,-2),直线l过点P(1,1)且与线段MN相交,则直线的斜率k的取值范围是()A.k≥或k≤-4B.-4≤k≤C.≤k≤4D.-≤k≤44.点到直线的距离为()A.1B.C.D.25.

2、直线l1:x+4y-2=0与直线l2:2x-y+5=0的交点坐标为()A、(-6,2)B、(-2,1)C、(2,0)D、(2,9)6.两条平行线l1:3x-4y-1=0与l2:6x-8y-7=0间的距离为()A、B、C、D、17.圆(x-1)2+(y+2)2=5关于原点(0,0)对称的圆的方程为(  )A.(x-1)2+(y-2)2=5B.(x+1)2+(y-2)2=5C.(x+1)2+(y+2)2=5D.(x-1)2+(y+2)2=58.点的内部,则的取值范围是()(A)(B)(C)(D)9.已知圆C与直线x-y=0及x-y-4=0都相切,圆心

3、在直线x+y=0上,则圆C的方程为()A.B.C.D.10.圆与圆的公共弦长为()A.B.C.D.二.填空题.11.一个正方体的各顶点均在同一球的球面上,若该球的表面积为12π,则该正方体的体积为  .12.已知正三棱锥P-ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为________.13.过点A(-3,1)的直线中,与原点距离最远的直线方程为________________.14.(5分)无论实数a,b(ab≠0)取何值,直线ax+by+2a﹣3b=0恒过定点.三、解答题.15.(12分

4、)如图,三棱柱ABC﹣A1B1C1,A1A⊥底面ABC,且△ABC为正三角形,A1A=AB=6,D为AC中点.(Ⅰ)求三棱锥C1﹣BCD的体积;(Ⅱ)求证:平面BC1D⊥平面ACC1A1;(Ⅲ)求证:直线AB1∥平面BC1D.16.已知两直线;求分别满足下列条件的的值:(1)直线过点,并且与垂直;(2)直线与平行,并且坐标原点到与的距离相等.17.已知圆:,点,直线.(1)求与圆相切,且与直线垂直的直线方程;(2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上的任一点,都有为一常数,试求出所有满足条件的点的坐标.【】新课标xx年高一

5、数学寒假作业4参考答案1.A考点:两条直线平行的判定;直线的一般式方程.专题:计算题.分析:因为所求直线与直线x﹣2y﹣2=0平行,所以设平行直线系方程为x﹣2y+c=0,代入此直线所过的点的坐标,得参数值解答:解:设直线方程为x﹣2y+c=0,又经过(1,0),∴1﹣0+c=0故c=﹣1,∴所求方程为x﹣2y﹣1=0;故选A.点评:本题属于求直线方程的问题,解法比较灵活.2.D3.A4.C5.B6.A7.B  设所求圆的圆心坐标为(a,b),由题意,知所求圆的半径与已知圆的半径相等,所求圆的圆心(a,b)与已知圆圆心(1,-2)关于原点(0,0

6、)对称,∴所求圆的圆心坐标为(-1,2),故所求圆的方程为(x+1)2+(y-2)2=5.8..A9.B10.C11.8考点:球内接多面体.专题:球.分析:由题意求出正方体的对角线的长,就是球的直径,求出正方体的棱长,然后正方体的体积.解答:解:一个正方体的各个顶点都在一个表面积为12π的球面上,所以4πr2=12所以球的半径:,正方体的棱长为a:a=2,a=2,所以正方体的体积为:8.故答案为:8点评:本题是基础题,考查正方体的外接球的表面积,求出正方体的体积,考查计算能力.12.13.3x-y+10=0  设原点为O,则所求直线过点A(-3,

7、1)且与OA垂直,又kOA=-,∴所求直线的斜率为3,故其方程为y-1=3(x+3).即3x-y+10=0.14.(﹣2,3)考点:恒过定点的直线.专题:直线与圆.分析:把已知直线变形为,然后求解两直线x+2=0和y﹣3=0的交点得答案.解答:解:由ax+by+2a﹣3b=0,得a(x+2)+b(y﹣3)=0,即,联立,解得.∴直线ax+by+2a﹣3b=0恒过定点(﹣2,3).故答案为:(﹣2,3).点评:本题考查了直线系方程,关键是掌握该类问题的求解方法,是基础题.15.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定

8、.专题:综合题.分析:(Ⅰ)先根据△ABC为正三角形,D为AC中点,得到BD⊥AC,求出△BCD的面积;再根据C1C⊥底面ABC即可求出

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。