欢迎来到天天文库
浏览记录
ID:45016435
大小:329.79 KB
页数:13页
时间:2019-11-07
《2019届贵州省遵义航天高级中学高三第一次模拟(月考)考试数学(理)试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019届贵州省遵义航天高级中学高三第一次模拟(月考)高三理科数学一、选择题:(本题12小题,每小题5分,共60分)1、复数的共轭复数是( )(A)(B)(C)(D)2、已知全集,集合,,则ACB=A.B.C.D.3、设随机变量服从正态分布,若,则()A.1B.2C.3D.44、下列有关命题的说法错误的是()A.若“”为假命题,则与均为假命题;B.“”是“”的充分不必要条件;C.若命题,则命题;D.“”的必要不充分条件是“”.5、欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数
2、集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当时,被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限6.在区间上任取两个数,则这两个数之和大于3的概率是()A.B.C.D.7.函数的图像大致为()8.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.9.若仅存在一个实数,使得曲线:关于直线对称,则的取值范围是()A.B.C.D.10.将甲、乙、丙、丁四名学生分
3、到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18B.24C.30D.3611、已知和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则该双曲线的离心率为()(A)(B)(C)(D)12、已知函数与的图象上存在关于轴对称的点,则的取值范围是()A.B.C.D.二、填空题:(本题4小题,每小题5分,共20分)13.已知菱形的边长为,,则等于________.14.记为数列的前项和,若,则_____________.15
4、.抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为____________.16.已知点在同一个球的球面上,,,若四面体的体积为,球心恰好在棱上,则这个球的表面积为________.三、解答题:17.(12分)设是数列的前项和,已知,.(1)求数列的通项公式(2)设,求数列的前项和.18、(12分)甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪70元,每单抽成2元;乙公司无底薪,40单以内(含40单)的部分每单抽成4元,超出40单的部分每单抽成6元.假设同一公司送餐员一天的送餐单数相同
5、,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表送餐单数3839404142天数2040201010乙公司送餐员送餐单数频数表送餐单数3839404142天数1020204010(1)现从甲公司记录的这100天中随机抽取两天,求这两天送餐单数都大于40的概率;(2)若将频率视为概率,回答以下问题:(ⅰ)记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;(ⅱ)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知
6、识为他作出选择,并说明理由.19.(12分)如图,四边形是矩形,沿对角线将折起,使得点在平面上的射影恰好落在边上.(1)求证:平面平面;(2)当时,求二面角的余弦值.[来源:]20.(12分)已知点和动点,以线段为直径的圆内切于圆.(1)求动点的轨迹方程;(2)已知点,,经过点的直线与动点的轨迹交于,两点,求证:直线与直线的斜率之和为定值.21、(12分)¨°??aoˉêy,(1)¨º?è·?¨oˉêy¦Ì?á?μ???êy£?¡ê¡§2¡ê?¨¦¨¨¡ê?¨º?oˉêy¦Ì?á???á?μ?£??¤?÷£o¡ê
7、?22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.理科数学答案附理科答案:一、选择题:1-------5BCBDC6--------10ABDDC11--12CB二填空题:13.14.-6315.1316.16一、解答题:17、【答案】(1);(2).【解析】(1)∵,,∴当时,,得;····1分当时,,∴当时,,即,····3分又,····4分∴是以为首项,为公比的
8、等比数列.····5分∴数列的通项公式为.····6分(2)由(1)知,,····7分,····8分当为偶数时,;····10分当为奇数时,,∴.····12分/18、解:(1)记“抽取的两天送餐单数都大于40”为事件,则;…………4分(2)(ⅰ)设乙公司送餐员送餐单数为,则当时,;当时,;当时,;当时,;当时,.所以的所有可能取值为152,156,160,166,172
此文档下载收益归作者所有