欢迎来到天天文库
浏览记录
ID:44939050
大小:285.22 KB
页数:7页
时间:2019-11-05
《2019_2020学年高中数学第2章数列2.3.3等比数列的前n项和等比数列前n项和的性质及应用讲义苏教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时 等比数列前n项和的性质及应用学习目标核心素养1.掌握等比数列前n项和的性质的应用.(重点)2.掌握等差数列与等比数列的综合应用.(重点)3.能用分组转化方法求数列的和.(重点、易错点)1.通过等比数列前n项和公式的函数特征的学习,体现了逻辑推理素养.2.借助等比数列前n项和性质的应用及分组求和,培养学生的数学运算素养.1.等比数列前n项和的变式当公比q≠1时,等比数列的前n项和公式是Sn=,它可以变形为Sn=-·qn+,设A=,上式可写成Sn=-Aqn+A.由此可见,非常数列的等比数列的前n项和Sn是由
2、关于n的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q=1时,因为a1≠0,所以Sn=na1是n的正比例函数(常数项为0的一次函数).2.等比数列前n项和的性质性质一:若Sn表示数列{an}的前n项和,且Sn=Aqn-A(Aq≠0,q≠±1),则数列{an}是等比数列.性质二:若数列{an}是公比为q的等比数列,则①在等比数列中,若项数为2n(n∈N*),则=q.②Sn,S2n-Sn,S3n-S2n成等比数列.思考:在等比数列{an}中,若a1+a2=20,a3+a4=40,如何求S6
3、的值?[提示] S2=20,S4-S2=40,∴S6-S4=80,∴S6=S4+80=S2+40+80=140.1.设数列{an}是首项为1,公比为-2的等比数列,则a1+
4、a2
5、+a3+
6、a4
7、=________.15 [法一:a1+
8、a2
9、+a3+
10、a4
11、=1+
12、1×(-2)
13、+1×(-2)2+
14、1×(-2)3
15、=15.法二:因为a1+
16、a2
17、+a3+
18、a4
19、=
20、a1
21、+
22、a2
23、+
24、a3
25、+
26、a4
27、,数列{
28、an
29、}是首项为1,公比为2的等比数列,故所求代数式的值为=15.]2.已知数列{an}为等比数列,且
30、前n项和S3=3,S6=27,则公比q=________.2 [q3===8,所以q=2.]3.若数列{an}的前n项和Sn=an+,则{an}的通项公式是an=________.(-2)n-1 [当n=1时,S1=a1+,所以a1=1.当n≥2时,an=Sn-Sn-1=an+-=(an-an-1),所以an=-2an-1,即=-2,所以{an}是以1为首项的等比数列,其公比为-2,所以an=1×(-2)n-1,即an=(-2)n-1.]4.在正项等比数列{an}中,已知a1a2a3=4,a4a5a6=12,an
31、-1·anan+1=324,则n=________.14 [设数列{an}的公比为q,由a1a2a3=4=aq3与a4a5a6=12=aq12,可得q9=3,an-1anan+1=aq3n-3=324,因此q3n-6=81=34=q36,所以3n-6=36,即n=14.]等比数列前n项和公式的函数特征应用【例1】 已知数列{an}的前n项和Sn=an-1(a是不为零且不等于1的常数),则数列{an}( )A.一定是等差数列B.一定是等比数列C.是等差数列或等比数列D.既非等差数列,也非等比数列B [当n≥2时,
32、an=Sn-Sn-1=(a-1)·an-1;当n=1时,a1=a-1,满足上式.∴an=(a-1)·an-1,n∈N*.∴=a,∴数列{an}是等比数列.]1.已知Sn通过an=求通项an,应特别注意n≥2时,an=Sn-Sn-1.2.若数列{an}的前n项和Sn=A(qn-1),其中A≠0,q≠0且q≠1,则{an}是等比数列.1.若{an}是等比数列,且前n项和为Sn=3n-1+t,则t=________.- [显然q≠1,此时应有Sn=A(qn-1),又Sn=·3n+t,∴t=-.]等比数列前n项和性质的应
33、用[探究问题]1.在等差数列中,我们知道Sm,S2m-Sm,S3m-S2m,…仍组成等差数列.在等比数列{an}中,若连续m项的和不等于0,那么Sm,S2m-Sm,S3m-S2m,…仍组成等比数列吗?为什么?[提示] Sm,S2m-Sm,S3m-S2m,…仍组成等比数列.∵在等比数列{an}中有am+n=amqn,∴Sm=a1+a2+…+am,S2m-Sm=am+1+am+2+…+a2m=a1qm+a2qm+…+amqm=(a1+a2+…+am)qm=Sm·qm.同理S3m-S2m=Sm·q2m,…,在Sm≠0时
34、,Sm,S2m-Sm,S3m-S2m,…仍组成等比数列.2.若数列{an}为项数为偶数的等比数列,且S奇=a1+a3+a5+…,S偶=a2+a4+a6+…,那么等于何值?[提示] 由等比数列的通项公式可知==q.【例2】 (1)等比数列{an}的前n项和为Sn,S2=7,S6=91,则S4为( )A.28 B.32 C.21 D.28或-21(2)等比数列{an}
此文档下载收益归作者所有