欢迎来到天天文库
浏览记录
ID:44897419
大小:3.67 MB
页数:3页
时间:2019-11-01
《高中数学第二讲二圆内接四边形的性质与判定定理课堂探究新人教A版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二圆内接四边形的性质与判定定理课堂探究探究一证明四点共圆判断四点共圆时,要根据题目特点,灵活选用判定四点共圆的方法.【典型例题1】如图所示,在△ABC中,AD=DB,DF⊥AB交AC于点F,AE=EC,EG⊥AC交AB于点G.求证:(1)D,E,F,G四点共圆;(2)G,B,C,F四点共圆.思路分析:(1)连接GF,则易证△GDF与△GEF均为直角三角形,由直角三角形斜边的中点到三个顶点的距离相等可得出结论.(2)连接DE,由条件易证DE∥BC,从而∠ADE=∠B,由(1)知∠ADE=∠GFE,
2、从而∠GFE=∠B,从而得到结论.证明:(1)连接GF.由DF⊥AB,EG⊥AC,知∠GDF=∠GEF=90°,∴GF的中点到D,E,F,G四点的距离相等,∴D,E,F,G四点共圆.(2)连接DE.由AD=DB,AE=EC,知DE∥BC,∴∠ADE=∠B.又由(1)中D,E,F,G四点共圆,∴∠ADE=∠GFE,∴∠GFE=∠B,∴G,B,C,F四点共圆.规律小结判定四点共圆的方法:①如果四个点与一定点距离相等,那么这四个点共圆;②如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆;③如
3、果一个四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆(如本题);④与线段两个端点连线的夹角相等(或互补)的点连同该线段两个端点在内共圆.3探究二圆内接四边形的性质的应用当已知条件中出现圆内接四边形时,常用圆内接四边形的性质来获得角相等或互补,从而为证明三角形相似或两条直线平行等问题创造条件.【典型例题2】两圆相交于A,B,过A作两直线分别交两圆于C,D和E,F.若∠EAB=∠DAB,求证:CD=EF.思路分析:连接CB,BF,要证CD=EF,只需证明△CBD≌△EBF即可.从题
4、图可以看出,∠BCA=∠BEA,∠D=∠F,因此,尚需找一条对应边相等即可.比如,能否推出BC=BE呢?要证BC=BE,只需∠CEB=∠ECB,有无可能呢?可以发现,∠ECB=∠1,又已知∠1=∠2,所以只需证∠2=∠CEB即可.这时我们发现,四边形ABEC是圆内接四边形,根据性质定理,它的外角∠2与它的内对角∠CEB当然相等.至此,结论得证.证明:连接CB,BF.因为四边形ABEC为圆内接四边形,所以∠2=∠CEB.又因为∠1=∠ECB,且∠1=∠2,而∠2=∠CEB,所以∠CEB=∠ECB.
5、所以BC=BE.在△CBD与△EBF中,∠BCA=∠BEA,∠D=∠F,BC=BE,所以△CBD≌△EBF.所以CD=EF.探究三易错辨析易错点:忽视分类讨论致误【典型例题3】已知⊙O的直径AB=4,弦AC=2,AD=2,则∠DAC=__________.错解:如图,∵AB=4,AD=2,∴∠BAD=45°.又∵AC=2,∴∠CAB=30°,∴∠CAD=45°-30°=15°.3错因分析:作图时,未能考虑全面,没有对相对位置关系进行分类讨论,致使题目答案漏解.正解:根据题意,分两种情况讨论:图①
6、(1)当弦AD,AC在直径AB的同侧时,如图①,由错解得,∠DAC=15°.(2)当弦AD,AC在直径AB异侧时,如图②.图②则∠DAC=75°,综上,∠DAC=15°或75°.3
此文档下载收益归作者所有