2017_18版高中数学第三章圆锥曲线与方程1.2椭圆的简单性质一学案北师大版选修

2017_18版高中数学第三章圆锥曲线与方程1.2椭圆的简单性质一学案北师大版选修

ID:44868474

大小:249.50 KB

页数:9页

时间:2019-10-31

2017_18版高中数学第三章圆锥曲线与方程1.2椭圆的简单性质一学案北师大版选修_第1页
2017_18版高中数学第三章圆锥曲线与方程1.2椭圆的简单性质一学案北师大版选修_第2页
2017_18版高中数学第三章圆锥曲线与方程1.2椭圆的简单性质一学案北师大版选修_第3页
2017_18版高中数学第三章圆锥曲线与方程1.2椭圆的简单性质一学案北师大版选修_第4页
2017_18版高中数学第三章圆锥曲线与方程1.2椭圆的简单性质一学案北师大版选修_第5页
资源描述:

《2017_18版高中数学第三章圆锥曲线与方程1.2椭圆的简单性质一学案北师大版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.2 椭圆的简单性质(一)学习目标 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.知识点一 椭圆的范围、对称性和顶点坐标思考1 观察椭圆+=1(a>b>0)的形状(如图),你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?思考2 在画椭圆图形时,怎样才能画的更准确些?梳理 椭圆的简单性质焦点在x轴上焦点在y轴上标准方程____________(a>b>0)____________(a>b>0)图形焦点坐标对称性关于x轴、y轴轴对称,关于坐标原点

2、中心对称9顶点坐标A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)范围

3、x

4、≤____,

5、y

6、≤____

7、x

8、≤____,

9、y

10、≤____长轴、短轴长轴A1A2长为______,短轴B1B2长为______知识点二 椭圆的离心率思考 如何刻画椭圆的扁圆程度?梳理 (1)椭圆的焦距与长轴长的比e=____________称为椭圆的离心率.(2)对于+=1,b越小,对应的椭圆越____,反之,e越接近于0,c就越接近于0,从而b越接近于a,这时椭圆越接近于圆,于是

11、,当且仅当a=b时,c=0,两焦点重合,图形变成圆,方程变为x2+y2=a2.(如图)类型一 由椭圆方程研究其简单性质例1 求椭圆9x2+16y2=144的长轴长、短轴长、离心率、焦点和顶点坐标.引申探究本例中若把椭圆方程改为“9x2+16y2=1”求其长轴长、短轴长、离心率、焦点和顶点坐标. 9反思与感悟 解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a,b,c之间的关系和定义,求椭圆的基本量.跟踪训练1 求椭圆9x2+y2=81的长轴长、短轴长、焦点坐标、顶点坐标和离心率.类型二 椭圆的性

12、质的简单应用命题角度1 依据椭圆的性质求标准方程例2 如图所示,已知椭圆的中心在原点,它在x轴上的一个焦点F与短轴两个端点B1,B2的连线互相垂直,且这个焦点与较近的长轴的端点A的距离为-,求这个椭圆的方程.反思与感悟 此类问题应由所给的性质充分找出a,b,c所应满足的关系式,进而求出a,b,在求解时,需注意椭圆的焦点位置.跟踪训练2 根据下列条件,求中心在原点,对称轴在坐标轴上的椭圆方程:(1)长轴长是短轴长的2倍,且过点(2,-6);(2)焦点在x轴上,一个焦点与短轴的两端点连线互相垂直,且半焦距为6.命题角度2 对称性问题例3 讨论方程

13、x3y+x2y2+xy3=1所表示的曲线关于x轴,y轴,原点的对称性.9反思与感悟 研究曲线关于x轴,y轴,原点的对称性,只需用“-y”代替方程中的“y”,用“-x”代替方程中的“x”,同时代替,若方程不变,则得到相应的对称性.跟踪训练3 曲线x2-2y+1=0的对称轴为(  )A.x轴B.y轴C.直线y=xD.无法确定类型三 椭圆的离心率的求解例4 已知椭圆+=1(a>b>0)的两个焦点分别为F1,F2,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B,与y轴的交点为C,且B为线段CF1的中点,若

14、k

15、≤,求椭圆离心率e的取值范围.反思与

16、感悟 求e的取值范围有以下几个步骤(1)切入点:已知

17、k

18、≤,求e的取值范围,需建立关于e的不等式.(2)思考点:①e与k有什么关系?②建立e与k的等量关系式;③利用B在椭圆上且为CF1的中点,构建关于e与k的等式;④如何求e的范围?先用e表示k,再利用

19、k

20、≤,求e的取值范围.(3)解题流程:先写出l的方程,求出B点的坐标,由点B在椭圆上,建立e与k的关系式,再求e的范围.跟踪训练4 已知点P(m,4)是椭圆+=1(a>b>0)上的一点,F1,F2是椭圆的两个焦点,若△PF1F2的内切圆的半径为,则此椭圆的离心率为________.1.已知

21、椭圆的方程为2x2+3y2=m(m>0),则此椭圆的离心率为(  )9A.B.C.D.2.与椭圆9x2+4y2=36有相同焦点,且短轴长为2的椭圆的标准方程是(  )A.+=1B.x2+=1C.+y2=1D.+=13.若椭圆的对称轴为坐标轴,且长轴长为10,有一个焦点坐标是(3,0),则此椭圆的标准方程为________________________________________________________________________.4.已知点(m,n)在椭圆8x2+3y2=24上,则2m+4的取值范围是____________

22、____.5.已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为____________________________

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。