欢迎来到天天文库
浏览记录
ID:44868406
大小:245.00 KB
页数:6页
时间:2019-10-31
《2017_18版高中数学章末复习课学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章导数及其应用题型一 导数与曲线的切线利用导数求切线方程时关键是找到切点,若切点未知需设出.常见的类型有两种,一类是求“在某点处的切线方程”,则此点一定为切点,易求斜率进而写出直线方程即可得;另一类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q(x1,y1),由=f′(x1)和y1=f(x1)求出x1,y1的值,转化为第一种类型.例1 已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2
2、ln2时,f′(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值f(ln2)=eln2-2ln2=2-ln4,f(x)无极大值.(2)证明 令g(x)=ex-x2,则g′(x)=ex-2x.由(1)得g′(x)=f(x)≥f(ln2)>0.故g(x)在R上单调递
3、增,又g(0)=1>0,因此,当x>0时,g(x)>g(0)>0,即x24、>0,解集在定义域内的部分为增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为减区间.特别要注意定义域,写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连接.例2 求下列函数的单调区间:(1)f(x)=(x-3)ex,x∈(0,+∞);(2)f(x)=x(x-a)2.解 (1)f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,令f′(x)>0,解得x>2,又x∈(0,+∞),∴函数的单调增区间为(2,+∞),函数的单调减区间为(0,2).6(2)函数f(x)=x(x-a)2=x3-2ax5、2+a2x的定义域为R,由f′(x)=3x2-4ax+a2=0,得x1=,x2=a.①当a>0时,x1x2,∴函数f(x)的单调递增区间为(-∞,a),(,+∞),单调递减区间为(a,).③当a=0时,f′(x)=3x2≥0,∴函数f(x)的单调递增区间为(-∞,+∞),即f(x)在R上是单调递增的.综上,a>0时,函数f(x)的单调递增区间为(-∞,),(a,+∞),单调递减区间为(,a);a<0时,函数f(x)的单调6、递增区间为(-∞,a),(,+∞),单调递减区间为(a,);a=0时,函数f(x)的单调递增区间是(-∞,+∞).跟踪训练2 求下列函数的单调区间:(1)f(x)=sinx,x∈[0,2π];(2)y=xlnx.解 (1)函数的定义域是[0,2π],f′(x)=cosx,令cosx>0,解得2kπ-7、令lnx+1>0得x>e-1,因此,f(x)的单调递增区间是(e-1,+∞),单调递减区间是(0,e-1).题型三 数形结合思想在导数中的应用61.应用导数求函数极值的一般步骤:(1)确定函数f(x)的定义域;(2)解方程f′(x)=0的根;(3)检验f′(x)=0的根的两侧f′(x)的符号.若左正右负,则f(x)在此根处取得极大值;若左负右正,则f(x)在此根处取得极小值;否则,此根不是f(x)的极值点.2.求函数f(x)在闭区间[a,b]上的最大值、最小值的方法与步骤:(1)求f(x)在(a,b)内的极值;(2)将(1)求8、得的极植与f(a)、f(b)相比较,其中最大的一个值为最大值,最小的一个值为最小值;特别地,①当f(x)在(a,b)上单调时,其最小值、最大值在区间端点处取得,②当f(x)在(a,b)内只有一个极值点时,若在这一个点处f(x)有极大(小)值,则可以断定f(x)在该点处f(x)
4、>0,解集在定义域内的部分为增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为减区间.特别要注意定义域,写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连接.例2 求下列函数的单调区间:(1)f(x)=(x-3)ex,x∈(0,+∞);(2)f(x)=x(x-a)2.解 (1)f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,令f′(x)>0,解得x>2,又x∈(0,+∞),∴函数的单调增区间为(2,+∞),函数的单调减区间为(0,2).6(2)函数f(x)=x(x-a)2=x3-2ax
5、2+a2x的定义域为R,由f′(x)=3x2-4ax+a2=0,得x1=,x2=a.①当a>0时,x1x2,∴函数f(x)的单调递增区间为(-∞,a),(,+∞),单调递减区间为(a,).③当a=0时,f′(x)=3x2≥0,∴函数f(x)的单调递增区间为(-∞,+∞),即f(x)在R上是单调递增的.综上,a>0时,函数f(x)的单调递增区间为(-∞,),(a,+∞),单调递减区间为(,a);a<0时,函数f(x)的单调
6、递增区间为(-∞,a),(,+∞),单调递减区间为(a,);a=0时,函数f(x)的单调递增区间是(-∞,+∞).跟踪训练2 求下列函数的单调区间:(1)f(x)=sinx,x∈[0,2π];(2)y=xlnx.解 (1)函数的定义域是[0,2π],f′(x)=cosx,令cosx>0,解得2kπ-7、令lnx+1>0得x>e-1,因此,f(x)的单调递增区间是(e-1,+∞),单调递减区间是(0,e-1).题型三 数形结合思想在导数中的应用61.应用导数求函数极值的一般步骤:(1)确定函数f(x)的定义域;(2)解方程f′(x)=0的根;(3)检验f′(x)=0的根的两侧f′(x)的符号.若左正右负,则f(x)在此根处取得极大值;若左负右正,则f(x)在此根处取得极小值;否则,此根不是f(x)的极值点.2.求函数f(x)在闭区间[a,b]上的最大值、最小值的方法与步骤:(1)求f(x)在(a,b)内的极值;(2)将(1)求8、得的极植与f(a)、f(b)相比较,其中最大的一个值为最大值,最小的一个值为最小值;特别地,①当f(x)在(a,b)上单调时,其最小值、最大值在区间端点处取得,②当f(x)在(a,b)内只有一个极值点时,若在这一个点处f(x)有极大(小)值,则可以断定f(x)在该点处f(x)
7、令lnx+1>0得x>e-1,因此,f(x)的单调递增区间是(e-1,+∞),单调递减区间是(0,e-1).题型三 数形结合思想在导数中的应用61.应用导数求函数极值的一般步骤:(1)确定函数f(x)的定义域;(2)解方程f′(x)=0的根;(3)检验f′(x)=0的根的两侧f′(x)的符号.若左正右负,则f(x)在此根处取得极大值;若左负右正,则f(x)在此根处取得极小值;否则,此根不是f(x)的极值点.2.求函数f(x)在闭区间[a,b]上的最大值、最小值的方法与步骤:(1)求f(x)在(a,b)内的极值;(2)将(1)求
8、得的极植与f(a)、f(b)相比较,其中最大的一个值为最大值,最小的一个值为最小值;特别地,①当f(x)在(a,b)上单调时,其最小值、最大值在区间端点处取得,②当f(x)在(a,b)内只有一个极值点时,若在这一个点处f(x)有极大(小)值,则可以断定f(x)在该点处f(x)
此文档下载收益归作者所有