2017_18版高中数学第一单元常用逻辑用语章末复习课教学案

2017_18版高中数学第一单元常用逻辑用语章末复习课教学案

ID:44868385

大小:227.00 KB

页数:8页

时间:2019-10-31

2017_18版高中数学第一单元常用逻辑用语章末复习课教学案_第1页
2017_18版高中数学第一单元常用逻辑用语章末复习课教学案_第2页
2017_18版高中数学第一单元常用逻辑用语章末复习课教学案_第3页
2017_18版高中数学第一单元常用逻辑用语章末复习课教学案_第4页
2017_18版高中数学第一单元常用逻辑用语章末复习课教学案_第5页
资源描述:

《2017_18版高中数学第一单元常用逻辑用语章末复习课教学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一单元常用逻辑用语学习目标 1.理解命题及四种命题的概念,掌握四种命题间的相互关系.2.理解充分、必要条件的概念,掌握充分、必要条件的判定方法.3.理解逻辑联结词的含义,会判断含有逻辑联结词的命题的真假.4.理解全称量词、存在量词的含义,会判断全称命题、存在性命题的真假,会求含有一个量词的命题的否定.知识点一 全称命题与存在性命题1.全称命题与存在性命题真假的判断方法(1)判断全称命题为真命题,需严格的逻辑推理证明,判断全称命题为假命题,只需举出反例.(2)判断存在性命题为真命题,需要举出正例,

2、而判断存在性命题为假命题时,要有严格的逻辑证明.2.含有一个量词的命题否定的关注点全称命题的否定是存在性命题,存在性命题的否定是全称命题.否定时既要改写量词,又要否定结论.知识点二 简易逻辑联结词“且、或、非”命题的真假判断可以概括为口诀:“p与綈p”一真一假,“p∨q”一真即真,“p∧q”一假就假.pq綈pp∨qp∧q真真假真真真假假真假假真真真假假假真假假知识点三 充分条件、必要条件的判断方法1.直接利用定义判断:即若p⇒q成立,则p是q的充分条件,q是p的必要条件.(条件与结论是相对的)2.

3、利用等价命题的关系判断:p⇒q的等价命题是綈q⇒綈p,即若綈q⇒綈p成立,则p是q的充分条件,q是p的必要条件.3.从集合的角度判断充分条件、必要条件和充要条件若A⊆B,则p是q的充分条件,若AB,则p是q的充分不必要条件8若B⊆A,则p是q的必要条件,若BA,则p是q的必要不充分条件若A=B,则p,q互为充要条件若A⊈B且B⊈A,则p既不是q的充分条件,也不是q的必要条件其中p:A={x

4、p(x)成立},q:B={x

5、q(x)成立}.知识点四 四种命题的关系原命题与逆否命题为等价命题,逆命题

6、与否命题为等价命题.类型一 命题的关系及真假的判断例1 将下列命题改写成“如果p,则q”的形式,并写出它的逆命题、否命题和逆否命题以及它们的真假.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根. 反思与感悟 (1)四种命题的改写步骤①确定原命题的条件和结论.②逆命题:把原命题的条件和结论交换.否命题:把原命题中条件和结论分别否定.逆否命题:把原命题中否定了的结论作条件、否定了的条件作结论.(2)命题真假的判断方法8跟踪训练1 下列四个结论:①已知a,b,c∈

7、R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是“若a+b+c≠3,则a2+b2+c2<3”;②命题“若x-sinx=0,则x=0”的逆命题为“若x≠0,则x-sinx≠0”;③命题p的否命题和命题p的逆命题同真同假;④若

8、C

9、>0,则C>0.其中正确结论的个数是(  )A.1B.2C.3D.4类型二 逻辑联结词与量词的综合应用例2 已知p:∃x∈R,mx2+2≤0.q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是(  )A.[1,+∞)B.(-∞,-1]C

10、.(-∞,-2]D.[-1,1]反思与感悟 解决此类问题首先理解逻辑联结词的含义,掌握简单命题与含有逻辑联结词的命题的真假关系.其次要善于利用等价关系,如:p真与綈p假等价,p假与綈p真等价,将问题转化,从而谋得最佳解决途径.跟踪训练2 已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x0满足不等式x+2ax0+2a≤0.若命题“p或q”是假命题,求a的取值范围.  类型三 充分条件与必要条件命题角度1 充分条件与必要条件的判断例3 (1)设x∈R,则“x2-3x>

11、0”是“x>4”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8(2)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件反思与感悟 条件的充要关系的常用判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与綈B⇒綈A,B⇒A与綈A⇒綈B,A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判

12、断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.跟踪训练3 使a>b>0成立的一个充分不必要条件是(  )A.a2>b2>0B.>>0C.lna>lnb>0D.xa>xb且x>0.5命题角度2 充分条件与必要条件的应用例4 设命题p:x2-5x+6≤0;命题q:(x-m)(x-m-2)≤0,若綈p是綈q的必要不充分条件,求实数m的取值范围.   反思与感悟 利用条件的充要性求参数的范围(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。