资源描述:
《2019_2020学年高中数学第一章集合与常用逻辑用语1.1集合的概念讲义新人教A版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.1 集合的概念最新课程标准:(1)通过实例,了解集合的含义,理解元素与集合的属于关系.(2)针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.知识点一 集合的概念1.元素:一般地,我们把研究对象统称为元素.2.集合:把一些元素组成的总体叫做集合.3.集合中元素的特征特征含义确定性集合中的元素是确定的,即给定一个集合,任何元素在不在这个集合里是确定的.它是判断一组对象是否构成集合的标准互异性给定一个集合,其中任何两个元素都是不同的,也就是说,在同一个集合中,同一个元素不能重复出现无序性集合中的元素无先后顺序之分4
2、.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合是相等的. 集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么,集合中的元素可以是点,也可以是一些人或一些物.知识点二 元素与集合的表示及关系1.元素与集合的符号表示表示2.元素与集合的关系关系语言描述记法示例a属于集合Aa是集合A中的元素a∈A若A表示由“世界四大洋”组成的集合,则太平洋∈A,长江∉Aa不属于集合Aa不是集合A中的元素a∉A 对元素和集合之间关系的两点说明1.符号“∈”“∉”
3、刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果.2.∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.3.数学中一些常用的数集及其记法全体非负整数组成的集合称为非负整数集(或自然数集),记作N;全体正整数组成的集合称为正整数集,记作N*或N+;全体整数组成的集合称为整数集,记作Z;全体有理数组成的集合称为有理数集,记作Q;全体实数组成的集合称为实数集,记作R.知识点三 集合的表示1.列举法把集合中的元素一一列举出来,并用大括号“{ }”括起来表示集合的方法叫做列举法
4、.2.描述法一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A
5、P(x)},这种表示集合的方法称为描述法.1.列举法表示集合时的4个关注点(1)元素与元素之间必须用“,”隔开.(2)集合中的元素必须是明确的.(3)集合中的元素不能重复.(4)集合中的元素可以是任何事物.2.描述法表示集合时的3个关注点(1)写清楚集合中元素的符号,如数或点等;(2)说明该集合中元素的共同特征,如方程、不等式、函数式或几何图形等;(3)不能出现未被说明的字母.[教材解难]1.教材P2思考例(3)到例(6)
6、都能组成集合例(3)中的元素为“每一个正方形”例(4)中的元素为“到直线l的距离等于定长d的所有点”例(5)中的元素为“方程x2-3x+2=0的所有实数根”例(6)中的元素为“地球上的四大洋”2.教材P3思考(1)能,大于等于0且小于等于9的3的倍数.(2)不能,不等式x-7<3的解集是x<10,元素有无数个,列举不完.3.教材P5思考用自然语言、列举法和描述法表示集合时各有各的特点,自然语言只需表达出集合中元素的共同特征,不受形式的限制.列举法和描述法是集合语言,有严格的格式要求.其中列举法非常明确地列出组成集合的元素,适用于表
7、示元素个数较少的集合,但是不易看出元素所具有的特征,且有些集合是不能用列举法表示的,如不等式x-1>0的解集;描述法清楚地表述了元素的共同特征,适用于表示无限集或元素个数较多的有限集,但是不容易看出集合的具体元素.[基础自测]1.下列能构成集合的是( )A.中央电视台著名节目主持人B.我市跑得快的汽车C.上海市所有的中学生D.香港的高楼解析:A,B,D中研究的对象不确定,因此不能构成集合.答案:C2.下列各组中的两个集合M和N,表示相等集合的是( )A.M={π},N={3.14159}B.M={2,3},N={(2,3)}C
8、.M={x
9、-110、-
11、}解析:选项A中两个集合的元素互不相等,选项B中两个集合一个是数集,一个是点集,选项C中集合M={0,1},只有D是正确的.答案:D3.集合{x∈N*
12、x-3<2}的另一种表示法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}解析:∵x-3<2,x∈N*,∴x<5,x∈N*,∴x=1,2,3,4.故选B.答案:B4.设-5∈{x
13、x2-ax-5=0},则集合{x
14、x2+ax+3=
15、0}=________.解析:由题意知,-5是方程x2-ax-5=0的一个根,所以(-5)2+5a-5=0,得a=-4,则方程x2+ax+3=0,即x2-4x+3=0,解得x=1或x=3,所以{x
16、x2-4x+3=0}={1,3}.答案:{1,3}