欢迎来到天天文库
浏览记录
ID:44786335
大小:248.00 KB
页数:9页
时间:2019-10-28
《冀教版八年级上第16章《勾股定理》水平测试(C)(含答案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第16章《勾股定理》水平测试(C)一、精心选一选,相信你一定能选对!(每题3分,共30分)1、已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()、A、1:1:B、1::2C、1::D、1:4:12、已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()、A、B、3C、D、3、下列各组线段中,能够组成直角三角形的是()、A、6,7,8B、5,6,7C、4,5,6D、3,4,54、下列各命题的逆命题成立的是()A、全等三角形的对应角相等B、如果两个数相等,那么它们的绝对值相等C、两直
2、线平行,同位角相等D、如果两个角都是45°,那么这两个角相等5、若等边△ABC的边长为2cm,那么△ABC的面积为()、A、cm2B、2cm2C、3cm2D、4cm26、在Rt△ABC中,已知其两直角边长a=1,b=3,那么斜边c的长为()、A、2B、4C、2D、7、如图所示,△ABC中,CD⊥AB于D,若AD=2BD,AC=5,BC=4,则BD的长为()、A、B、C、1D、8、下面四组数中是勾股数的有()、(1)1.5,2.5,2(2),,2(3)12,16,20(4)0.5,1.2,1.3A、1组
3、B、2组C、3组D、4组9、直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为()、A、182B、183C、184D、18510、如图,长方形ABCD中,AB=4,BC=3,将其沿直线MN折叠,使点C与点A重合,则CN的长为()、A、B、C、D、(第10题)(第12题)二、细心填一填,相信你填得又快又准!(每题3分,共18分)11、已知直角三角形的两边分别为3、4,则第三边为_____、12、你听说过亡羊补牢的故事吗?如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽1.2m的栅栏门
4、的相对角顶点间加一个加固木板,这条木板需_____m长、13、如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为_______米、(第13题)(第14题)14、已知,如图所示,Rt△ABC的周长为4+2,斜边AB的长为2,则Rt△ABC的面积为_____、15、如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯、当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间
5、的距离为2米,则梯顶离路灯______米、(第15题)(第16题)16、正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一实线上;②连结三个格点,使之构成直角三角形,小华在下边的正方形网格中作出了Rt△ABC、请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等、三、耐心选一选,千万别漏选!(每题4分,共8分,错选一项得0分,对而不全酌情给分)17、在Rt△ABC中,∠C=90°,∠A
6、=30°,则下列结论中正确的是()。A、AB=2BCB、AB=2ACC、AC2+AB2=BC2D、AC2+BC2=AB218、在Rt△ABC中,若AC=,BC=,AB=3,则下列结论中不正确的是()。A、∠C=90°B、∠B=90°C、△ABC是锐角三角形D、△ABC是钝角三角形四、仔细想一想,相信你一定行!19、(8分)如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?20、(8分)已知,如图所示
7、,折叠长方形的一边AD,使点D落在BC边的点F处,如果AB=8cm,BC=10cm,求EC的长、21、(8分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?22、(9分)细心观察下图,认真分析各式,然后解答问题、()2+1=2S1=()2+1=3S2=()2+4=5S3=(1)请用含n(n是正整数)的等式表示上述变化规律;(
8、2)推算出OA10的长;(3)求出S12+S22+S22+…+S102的值、23、(9分)如图,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD的顶点在b正方形MNPQ的4条边的小方格顶点上、(1)设正方形MNPQ网格内的每个小方格的边长为1,求:①△ABQ,△BCM,△CDN,△ADP的面积;②正方形ABCD的面积、(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?相信你能给出
此文档下载收益归作者所有