欢迎来到天天文库
浏览记录
ID:44781319
大小:288.07 KB
页数:11页
时间:2019-10-28
《【学案】两招解决极值点偏移》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、两招解决极值点偏移问题一、极值点偏移的含义众所周知,函数满足定义域内任意自变量都有,则函数关于直线对称;可以理解为函数在对称轴两侧,函数值变化快慢相同,且若为单峰函数,则必为的极值点.如二次函数的顶点就是极值点,若的两根的中点为,则刚好有,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数的极值点为,且函数满足定义域内左侧的任意自变量都有或,则函数极值点左右侧变化快慢不同.故单峰函数定义域内任意不同的实数满足,则与极值点必有确定的大小关系:若,则称为极值点左
2、偏;若,则称为极值点右偏.如函数的极值点刚好在方程的两根中点的左边,我们称之为极值点左偏.二、极值点偏移问题的一般题设形式:1.若函数存在两个零点且,求证:(为函数的极值点);2.若函数中存在且满足,求证:(为函数的极值点);3.若函数存在两个零点且,令,求证:;4.若函数中存在且满足,令,求证:.二、运用判定定理判定极值点偏移的方法1、方法概述:(1)求出函数的极值点;(2)构造一元差函数;(3)确定函数的单调性;(4)结合,判断的符号,从而确定、的大小关系.口诀:极值偏离对称轴,构造函数觅行
3、踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数满足,为函数的极值点,求证:.(1)讨论函数的单调性并求出的极值点;假设此处在上单调递减,在上单调递增.(2)构造;注:此处根据题意需要还可以构造成的形式.(3)通过求导讨论的单调性,判断出在某段区间上的正负,并得出与的大小关系;假设此处在上单调递增,那么我们便可得出,从而得到:时,.(4)不妨设,通过的单调性,,与的大小关系得出结论;接上述情况,由于时,且,,故,又因为,且在上单调递减,从而得到,从而得证.(5)若要证明,还需
4、进一步讨论与的大小,得出所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为,故,由于在上单调递减,故.【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求的单调性、极值点,证明与(或与)的大小关系;若试题难度较大,则直接给出形如或的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.【例题讲解】【例1】已知函数.(1)求函数的单调区间和极值;(2)若,且,证明:.【例2】函
5、数有两极值点,且.证明:.【例3】已知函数,若,且,证明:.【例4】已知函数有两个零点.设是的两个零点,证明:.【例5】已知函数,其中(1)若函数有两个零点,求的取值范围;(2)若函数有极大值为,且方程的两根为,且,证明:.【例8】已知函数,若任意不同的实数满足,求证:.题型二利用对数平均不等式两个正数和的对数平均定义:对数平均与算术平均、几何平均的大小关系:(此式记为对数平均不等式)取等条件:当且仅当时,等号成立.只证:当时,.不失一般性,可设.证明如下:(I)先证:……[不等式构造函数,则.
6、因为时,,所以函数在上单调递减,故,从而不等式成立;(II)再证:……[不等式构造函数,则.因为时,,所以函数在上单调递增,故,从而不等式成立;综合(I)(II)知,对,都有对数平均不等式成立,当且仅当时,等号成立.【例1】已知函数,为常数,若函数有两个零点,证明:【例2】已知函数(Ⅰ)讨论函数的单调区间与极值;(Ⅱ)若且恒成立,求的最大值;(Ⅲ)在(Ⅱ)的条件下,且取得最大值时,设,且函数有两个零点,求实数的取值范围,并证明:【例3】已知函数有两个零点.证明:.【例4】已知函数.如果,且.证明
7、:.【例5】(苏州市2019届调研试题)20.(本题满分16分)设函数,a为常数.(1)当时,求在点处的切线方程;(2)若为函数的两个零点,.①求实数的取值范围;②比较与的大小关系,并说明理由.
此文档下载收益归作者所有