欢迎来到天天文库
浏览记录
ID:44753908
大小:119.02 KB
页数:3页
时间:2019-10-28
《【精品课堂】2017年九年级数学上册24.3一元二次方程根与系数的关系素材(新版)冀教版》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、专题:一元二次方程根与系数的关系1.考点分析反映了一元二次方程根与系数之间的关系,当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程无实数根;如果设、是方程(a≠0)的两个实数根,那么+=;=;这部分内容以填空题、选择题为主,单独考查的也逐渐增多,综合考查的不少2.典例剖析例1.(1)(2007巴中)一元二次方程的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根分析:本题直接利用根的判别式先计算后判断即可解决问题.解:△=8>0,有两个不相等的实数根,故选B.(2)(2007芜湖
2、)已知是一元二次方程的一个根,则方程的另一个根是.分析:本题可以直接将一根代入方程,先求出c,再将c代入就可以求出另一根,但是这样解比较麻烦,如果利用根与系数的关系来就比较简单了.解:设另一根为,由根与系数的关系可知:+=4,解得:=.点评:以上两小题重点考查学生对一元二方程的根与系数的关系,即根的判别式和韦达定理的直接应用,只要记住结论易于解决问题.例2.(1)(2007卢州)若非零实数a,b(a≠b)满足,则=.分析:本题综合考查一元二次方程根的定义与根与系数之间的关系.解:由已可知:a,b是方程的两根,所以,所以=.(2)(2007淄搏)若关于x的一元二
3、次方程的两个实数根分别是,且满足.则k的值为()(A)-1或(B)-1(C)(D)不存在分析:本题直接运用根与系数的关系,但要注意检验.解:由根与系数的关系,得,又,所以解得:,但当时,方程无解,应舍去,故选C.点评:以上两例重点考查学生对一元二方程的根与系数的关系的灵活运用,它有时要结合根的定义来综合考虑问题.专练:1.(2007眉山)一元二次方程x2+x+2=0的根的情况是( )A.有两个不相等的正根B.有两个不相等的负根C.没有实数根D.有两个相等的实数根2.(2007成都)下列关于的一元二次方程中,有两个不相等的实数根的方程是( )A.B.C.D.
4、3.(2007卢州)若关于x的一元二次方程没有实数根,则实数m的取值是( )A.B.C.D.4.(2007芜湖)已知关于x的一元二次方程有两个不相等的实数根,则m的取值范围是()A.m>-1B.m<-2C.m≥0D.m<05.(2007淄搏)若关于x的一元二次方程的两个实数根分别是,且满足.则k的值为()A.-1或B.-1C.D.不存在6.(2007德阳)阅读材料:设一元二次方程的两根为,,则两根与方程系数之间有如下关系:,.根据该材料填空:已知,是方程的两实数根,则的值为______.7.(2007卢州)若非零实数a,b(a≠b)满足,则=.8.(2007
5、资阳)若x为任意实数时,二次三项式的值都不小于0,则常数c满足的条件是()A.≥0B.c≥9C.c>0D.c>9参考答案:1.C;2.D;3.C;4.A;5.A;6.10;7.;8.B.
此文档下载收益归作者所有