欢迎来到天天文库
浏览记录
ID:44749716
大小:176.50 KB
页数:3页
时间:2019-10-27
《七年级数学上册第3章整式及其加减3.3整式教案1(新版)北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.3 整式31.理解单项式、多项式及整式的概念,会判断单项式及整式.2.掌握单项式的系数与次数、多项式的次数与项的概念,明确它们之间的关系,并能灵活运用. 一、情境导入方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),现在方方和圆圆想算出窗帘的装饰物的面积分别是多少?窗户能射进阳光的面积分别是多少(窗框面积不计)?要解决这些问题,我们来学习下面的内容,就会知道答案.二、合作探究探究点一:单项式、多项式与整式的识别指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?x2+y2,
2、-x,,10,6xy+1,,m2n,2x2-x-5,,a7.解析:根据整式、单项式、多项式的概念和区别来进行判断.解:,的分母中含有字母,既不是单项式,也不是多项式,更不是整式.单项式有:-x,10,m2n,a7;多项式有:x2+y2,,6xy+1,2x2-x-5;整式有:x2+y2,-x,,10,6xy+1,m2n,2x2-x-5,a7. 方法总结:(1)分母中含有字母的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.探究点二:单项式与多项式【类型一】确定单项式的系数和次数分别写出下列单项式的系数和次数.(1)
3、-ab2;(2);(3).解析:单项式的系数就是单项式中的数字因数;单项式的次数就是单项式中所有字母指数的和,只要将这些字母的指数相加即可.解:(1)单项式的系数是-1,次数是3;3(2)单项式的系数是,次数是6;(3)单项式的系数是,次数是3. 方法总结:(1)当单项式的系数是1或-1时,“1”通常省略不写;单项式的系数是带分数时,通常写成假分数.单项式的系数包括前面的符号.(2)我们把常数项的次数看做0.确定单项式的次数时,单项式中单独一个字母的指数1不能忽略,如-3x3y,它的指数是4而不是3.(3)π是圆周率,是一个确定的数,不是字母.【类型二】确定
4、多项式的项和次数写出下列各多项式的项数和次数,并指出是几次几项式.(1)x2-3x+5;(2)a+b+c-d;(3)-a2+a2b+2a2b2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)x2-3x+5的项数为3,次数为2,是二次三项式;(2)a+b+c-d的项数为4,次数为1,是一次四项式;(3)-a2+a2b+2a2b2的项数为3,次数为4,是四次三项式. 方法总结:(1)多项式的项包括它的符号;(2)多项式的次数是多项式里次数最高的项的次数,而不是各项次数的和;(3)几次项是指多项式中
5、次数是几的项.探究点三:与多项式有关的探究性问题【类型一】根据次数确定未知字母的值已知-5xm+104xm-4xmy2是关于x、y的六次多项式,求m的值,并写出该多项式.解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m+2=6,解得m=4,进而可得此多项式.解:由题意得m+2=6,解得m=4,此多项式是-5x4+104x4-4x4y2. 方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型二】根据不含某项确定未知字母的值若关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,求m、n的值.解析:多
6、项式不含二次项和一次项,则二次项和一次项系数为0.解:∵关于x的多项式-5x3-mx2+(n-1)x-1不含二次项和一次项,∴m=0,n-1=0,则m=0,n=1. 方法总结:多项式不含哪一项,则哪一项的系数为0.探究点四:多项式的应用如图,某居民小区有一块宽为2a米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?3解析:四个角围成一个半径为a米的圆,阴影部分面积是长方形面积减去一个圆面积.解:
7、花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元. 方法总结:用式子表示实际问题中的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.探究点五:规律探究问题如图所示,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是 W.解析:第(1)个图形的周长为3,;第(2)个图形的周长为4=3+1;第(3)个图形的周长为5=3+1×2;第(4)个图形的周长为6=3+1×3.故第(n)个图形的周长为3+1(n-1)=2+n. 方法总结
8、:解答此类问题应采用比较归纳的方法和由
此文档下载收益归作者所有