精品系列:2019版高考数学(理科)总复习教师用书练习:7.3 解析几何(压轴题) 含解析

精品系列:2019版高考数学(理科)总复习教师用书练习:7.3 解析几何(压轴题) 含解析

ID:44730082

大小:394.50 KB

页数:20页

时间:2019-10-26

精品系列:2019版高考数学(理科)总复习教师用书练习:7.3 解析几何(压轴题) 含解析_第1页
精品系列:2019版高考数学(理科)总复习教师用书练习:7.3 解析几何(压轴题) 含解析_第2页
精品系列:2019版高考数学(理科)总复习教师用书练习:7.3 解析几何(压轴题) 含解析_第3页
精品系列:2019版高考数学(理科)总复习教师用书练习:7.3 解析几何(压轴题) 含解析_第4页
精品系列:2019版高考数学(理科)总复习教师用书练习:7.3 解析几何(压轴题) 含解析_第5页
资源描述:

《精品系列:2019版高考数学(理科)总复习教师用书练习:7.3 解析几何(压轴题) 含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、7、3 解析几何(压轴题)命题角度1曲线与轨迹问题 高考真题体验·对方向1、(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴垂线,垂足为N,点P满足、(1)求点P轨迹方程;(2)设点Q在直线x=-3上,且=1、证明:过点P且垂直于OQ直线l过C左焦点F、(1)解设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0)、由得x0=x,y0=y、因为M(x0,y0)在C上,所以=1、因此点P轨迹方程为x2+y2=2、(2)证明由题意知F(-1,0)、设Q(-3,

2、t),P(m,n),则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n)、由=1得-3m-m2+tn-n2=1、又由(1)知m2+n2=2,故3+3m-tn=0、所以=0,即、又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ直线l过C左焦点F、2、(2016全国Ⅲ·20)已知抛物线C:y2=2x焦点为F,平行于x轴两条直线l1,l2分别交C于A,B两点,交C准线于P,Q两点、(1)若F在线段AB上,R是PQ中点,证明:AR∥FQ;(2)若△PQF面积是△ABF面积两倍,求

3、AB中点轨迹方程、(1)证明由题知F、设l1:y=a,l2:y=b,则ab≠0,且A,B,P,Q,R、记过A,B两点直线为l,则l方程为2x-(a+b)y+ab=0、由于F在线段AB上,故1+ab=0、记AR斜率为k1,FQ斜率为k2,则k1==-b=k2、所以AR∥FQ、(2)解设l与x轴交点为D(x1,0),则S△ABF=

4、b-a

5、

6、FD

7、=

8、b-a

9、,S△PQF=、由题设可得

10、b-a

11、,所以x1=0(舍去),x1=1、设满足条件AB中点为E(x,y)、当AB与x轴不垂直时,由kAB=kDE可得(x≠1)、而=y,

12、所以y2=x-1(x≠1)、当AB与x轴垂直时,E与D重合、所以所求轨迹方程为y2=x-1、新题演练提能·刷高分1、(2018山西太原二模)已知以点C(0,1)为圆心动圆C与y轴负半轴交于点A,其弦AB中点D恰好落在x轴上、(1)求点B轨迹E方程;(2)过直线y=-1上一点P作曲线E两条切线,切点分别为M,N、求证:直线MN过定点、(1)解设B(x,y),则AB中点D,y>0、∵C(0,1),则,在☉C中,∵DC⊥DB,∴=0,∴-+y=0,即x2=4y(y>0)、∴点B轨迹E方程为x2=4y(y>0)、(2)证明由已

13、知条件可得曲线E方程为x2=4y,设点P(t,-1),M(x1,y1),N(x2,y2)、∵y=,∴y'=,∴过点M、N切线方程分别为y-y1=(x-x1),y-y2=(x-x2)、由4y1=,4y2=,上述切线方程可化为2(y+y1)=x1x,2(y+y2)=x2x、∵点P在这两条切线上,∴2(y1-1)=tx1,2(y2-1)=tx2,即直线MN方程为2(y-1)=tx,故直线2(y-1)=tx过定点C(0,1)、2、(2018广西梧州3月适应性测试)已知A(-2,0),B(2,0),直线PA斜率为k1,直线PB斜

14、率为k2,且k1k2=-、(1)求点P轨迹C方程;(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记△QF1O与△PF1R面积之和为S,求S最大值、解(1)设P(x,y),∵A(-2,0),B(2,0),∴k1=,k2=,又k1k2=-,∴=-,∴=1(x≠±2),∴轨迹C方程为=1(x≠±2)、(2)由O,R分别为F1F2,PF2中点,故OR∥PF1,故△PF1R与△PF1O同底等高,故,S==S△PQO,当直线PQ斜率不存在时,其方程为x=-1,此时

15、S△PQO=×1×;当直线PQ斜率存在时,设其方程为y=k(x+1),设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k≠0;联立解得(3+4k2)x2+8k2x+4k2-12=0,Δ=144(k2+1)>0,故

16、PQ

17、=

18、x1-x2

19、=,点O到直线PQ距离d=,S=

20、PQ

21、d=6,令u=3+4k2∈(3,+∞),故S=6,故S最大值为、3、(2018甘肃兰州一模)已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切动圆圆心为P、(1)求点P轨迹E方程;(2)设过点C直线l1交曲线E于Q,S两

22、点,过点D直线l2交曲线E于R,T两点,且l1⊥l2,垂足为W(Q,R,S,T为不同四个点)、①设W(x0,y0),证明:<1;②求四边形QRST面积最小值、(1)解设动圆半径为r,由于D在圆内,圆P与圆C内切,则

23、PC

24、=2-r,

25、PD

26、=r,

27、PC

28、+

29、PD

30、=2>

31、CD

32、=2,由椭圆定义可知,点P轨迹E是椭圆,a=,c=1,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。