资源描述:
《竞赛讲座 28代数式的变形(整式与分式)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、竞赛讲座28-代数式的变形(整式与分式)在化简,求值,证明恒等式(不等式),解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方,因式分解,换元,设参,拆项与逐步合并等方法作初步介绍. 1. 配方 在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题. 例1 (1986年全国初中竞赛题)设a,b,c,d都是整数,且m=a2+b2,n=c2+d2,mn也可以表示成两个整数的平方和,其形式是______. 解mn=(a2
2、+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2 =(ac-bd)2+(ad+bc)2, 所以,mn的形式为(ac+bd)2+(ad-bc)2或(ac-bd)2+(ad+bc)2. 例2(1984年重庆初中竞赛题)设x,y,z为实数,且 (y-z)2+(x-y)2+(z-x)2 =(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求的值. 解 将条件化简成 2x2+2y2+2z2-2x
3、y-2x2-2yz=0 ∴(x-y)2+(x-z)2+(y-z)2=0 ∴x=y=z,∴原式=1. 2.因式分解 前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子. 例3(1987年北京初二数学竞赛题)如果a是x2-3x+1=0的根,试求 的值. 解 ∵a为x2-3x+1=0的根, ∴ a2-3a+1=0,,且=1. 原式 说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算. 3.换元 换元使复杂的问题变得简洁明了. 例4 设a+b+c=3m
4、,求证: (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0. 证明 令p=m-a,q=m-b,r=m-c则 p+q+r=0. P3+q3+r3-3pqr=(p+q+r)(p2+q2+r2-pq-qr-rp)=0 ∴p3+q3+r3-3pqr=0 即 (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0 例5 (民主德国竞赛试题) 若,试比较A,B的大小. 解 设 则 . ∵2x>y ∴2x-y>0, 又y>0,
5、 可知 ∴A>B. 4.设参 当已知条件以连比的形式出现时,可引进一个比例系数来表示这个连比. 例6 若求x+y+z的值. 解 令 则有 x=k(a-b), y=(b-c)k z=(c-a)k, ∴x+y+z=(a-b)k+(b-c)k+(c-a)k=0. 例7 已知a,b,c为非负实数,且a2+b2+c2=1, ,求a+b+c的值. 解 设 a+b+c=k 则a+b=k-c,b+c=k-a,a+c=k-b. 由条件知 即 ∴a2k-a3+b2k-b3
6、+c2k-c3=-3abc, ∴(a2+b2+c2)k+3abc=a3+b3+c3. ∵a2+b2+c2=1, ∴k=a3+b3+c3-3abc =(a+b)3-3a2b-3ab2+c3-3abc =(a+b+c)[(a+b)2+c2-(a+b)c]-3ab(a+b+c), =(a+b+c)(a2+b2+c2-ab-bc-ca), ∴k=k(a2+b2+c2-ab-bc-ac), ∴k(a2+b2+c2-ab-bc-ca-1)=0, ∴k(-ab-bc-ac)=0. 若K=0
7、, 就是a+b+c=0. 若-ab-bc-ac=0, 即 (a+b+c)2-(a2+b2+c2)=0, ∴(a+b+c)2=1, ∴a+b+c=±1 综上知a+b+c=0或a+b+c=±1 5.“拆”,“并”和通分 下面重点介绍分式的变形: (1) 分离分式 为了讨论某些用分式表示的数的性质,有时要将一个分式表示为一个整式和一个分式的代数和. 例8(第1届国际数学竞赛试题)证明对于任意自然数n,分数皆不可约., 证明 如果一个假分数可以通约,化为带分数后,它的真分数部分也必定
8、可以通约. 而 显然不可通约,故不可通约,从而也不可通约. (2) 表示成部分分式 将一个分式表示为部分分式就是将分式化为若干个真分式的代数和. 例9 设n为正整数,求证: ① ② 证明 令 通分, 比较①,②两式,得A-B=0,且A+B=1,即A=B=. ∴ 令k=1,2,…,n得 (3)通分 通分是分式中最基本的变形,例9的变形就是以通分为基础的,下面再看一个技巧性较强的例子. 例10(1986年冬令营赛前训练题) 已知 求证:.