资源描述:
《2019版高考数学(理)(全国通用版)一轮复习课时分层作业: 二十 3.3三角函数的图象与性质 含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时分层作业二十三角函数的图象与性质一,选择题(每小题5分,共25分)1.(2018·海淀区模拟)已知函数f(x)=sin(ωx+)的最小正周期为π,则ω=( )A.1B.±1C.2D.±2【解析】选D.因为T=,所以
2、ω
3、==2,故ω=±2.【误区警示】解答本题易出现选C的错误答案,导致出现这种错误的原因是忽略了周期公式T=中的ω应加绝对值.2.(2017·全国卷Ⅲ)设函数f(x)=cos,则下列结论错误的是
4、( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x= D.f(x)在内单调递减【解析】选D.当x∈时,x+∈,函数在该区间内不单调.3.函数y=-2cos2+1是( )A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的非奇非偶函数【解析】选A.y=-2cos2+1=-+1=sin2x.4.(2016·浙江高考)函数y=sinx2的图象是( )【解题指南】根据函数的奇偶性和最值判断.【解析】选D.因为y=sinx2为偶函数,所以它的
5、图象关于y轴对称,排除A,C选项;当x2=,即x=±时,ymax=1,排除B选项.5.(2018·大连模拟)已知函数f(x)=sin(ωx-)(ω>0),若函数f(x)在区间上为单调递减函数,则实数ω的取值范围是( )A.B.C.D.【解析】选B.因为π6、=2+6k(k∈Z),又因为ω∈N*,故ω的最小值为2.答案:27.函数y=的定义域为________. 【解析】由题意得cosx≥,故2kπ-≤x≤+2kπ(k∈Z).答案:,k∈Z8.函数y=sinx-cosx+sinxcosx的值域为________.【解析】设t=sinx-cosx,则t2=sin2x+cos2x-2sinxcosx,sinxcosx=,且-≤t≤.所以y=-+t+=-(t-1)2+1.当t=1时,ymax=1;当t=-时,ymin=--.所以函数的值域为.答案:三,解答题(每小题10分,共20分)9.(20
7、17·北京高考)已知函数f(x)=cos(2x-)-2sinxcosx.(1)求f(x)的最小正周期.(2)求证:当x∈时,f(x)≥-.【解析】(1)f(x)=cos-2sinxcosx=cos2x+sin2x-sin2x=sin2x+cos2x=sin,所以T==π.(2)令t=2x+,因为-≤x≤,所以-≤2x+≤,因为y=sint在上递增,在上递减,且sin8、的最大值和最小值.【解析】(1)f(x)=sin,令2x+=kπ+,k∈Z,则x=+,k∈Z.所以函数f(x)图象的对称轴方程是x=+,k∈Z.(2)令2kπ-≤2x+≤2kπ+,k∈Z,则kπ-≤x≤kπ+,k∈Z.故f(x)的单调递增区间为,k∈Z.(3)当x∈时,≤2x+≤,所以-1≤sin≤,所以-≤f(x)≤1,所以当x∈时,函数f(x)的最大值为1,最小值为-.1.(5分)已知函数f=sin(ω>0),x∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f的图象关于直线x=ω对称,则ω的值为( )A.B.2C
9、.D.【解析】选D.因为f(x)在区间(-ω,ω)内单调递增,且函数图象关于直线x=ω对称,所以f(ω)必为一个周期上的最大值,所以有ω·ω+=2kπ+,k∈Z,所以ω2=+2kπ,k∈Z.又ω-(-ω)≤·,即ω2≤,即ω2=,所以ω=.2.(5分)(2018·广州模拟)已知函数f(x)=sinωx+cosωx(x∈R),又f(α)=2,f(β)=2,且
10、α-β
11、的最小值是,则正数ω的值为( )A.1B.2C.3D.4【解析】选D.函数f(x)=sinωx+cosωx=2sin.由f(α)=2,f(β)=2,且
12、α-β
13、的最小值
14、是,所以函数f(x)的最小正周期T=,所以ω==4.3.(5分)(2018·深圳模拟)若函数f(x)=sin(ωx+φ)在区间上是单调递减函数,且函数值从1减少到-1,则f=________.【解析】由题意知=-=,故T=π,所以ω=