欢迎来到天天文库
浏览记录
ID:44710891
大小:55.32 KB
页数:10页
时间:2019-10-25
《高考数学一轮复习板块命题点专练(八)数列文苏教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、板块命题点专练(八)数列命题点一 数列的概念及表示1.(2016·上海高考)无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和.若对任意n∈N*,Sn∈{2,3},则k的最大值为________.解析:由Sn∈{2,3},得a1=S1∈{2,3}.将数列写出至最多项,其中有相同项的情况舍去,共有如下几种情况:①a1=2,a2=0,a3=1,a4=-1;②a1=2,a2=1,a3=0,a4=-1;③a1=2,a2=1,a3=-1,a4=0;④a1=3,a2=0,a3=-1,a4=1;⑤a1=3,a2=-1,a3=0,a4=1;⑥a1=3,a2=-1,a3=1,a4=
2、0.最多项均只能写到第4项,即kmax=4.答案:42.(2014·全国卷Ⅱ)数列{an}满足an+1=,a8=2,则a1=________.解析:将a8=2代入an+1=,可求得a7=;再将a7=代入an+1=,可求得a6=-1;再将a6=-1代入an+1=,可求得a5=2;由此可以推出数列{an}是一个周期数列,且周期为3,所以a1=a7=.答案:命题点二 等差数列与等比数列1.(2018·北京高考)设{an}是等差数列,且a1=3,a2+a5=36,则{an}的通项公式为________.解析:法一:设数列{an}的公差为d.∵a2+a5=36,∴(a1+d)+(a1
3、+4d)=2a1+5d=36.∵a1=3,∴d=6,∴an=6n-3.法二:设数列{an}的公差为d,∵a2+a5=a1+a6=36,a1=3,∴a6=33,∴d==6,∴an=6n-3.答案:an=6n-32.(2017·江苏高考)等比数列{an}的各项均为实数,其前n项和为Sn.已知S3=,S6=,则a8=________.解析:设等比数列{an}的公比为q,则由S6≠2S3,得q≠1,则解得则a8=a1q7=×27=32.答案:323.(2018·全国卷Ⅰ)记Sn为数列{an}的前n项和.若Sn=2an+1,则S6=________.解析:∵Sn=2an+1,∴当n≥
4、2时,Sn-1=2an-1+1,∴an=Sn-Sn-1=2an-2an-1,即an=2an-1.当n=1时,由a1=S1=2a1+1,得a1=-1.∴数列{an}是首项a1为-1,公比q为2的等比数列,∴Sn===1-2n,∴S6=1-26=-63.答案:-634.(2016·江苏高考)已知{an}是等差数列,Sn是其前n项和.若a1+a=-3,S5=10,则a9的值是________.解析:法一:设等差数列{an}的公差为d,由S5=10,知S5=5a1+d=10,得a1+2d=2,即a1=2-2d.所以a2=a1+d=2-d,代入a1+a=-3,化简得d2-6d+9=0
5、,所以d=3,a1=-4.故a9=a1+8d=-4+24=20.法二:设等差数列{an}的公差为d,由S5=10,知=5a3=10,所以a3=2.所以由a1+a3=2a2,得a1=2a2-2,代入a1+a=-3,化简得a+2a2+1=0,所以a2=-1.公差d=a3-a2=2+1=3,故a9=a3+6d=2+18=20.答案:205.(2018·北京高考)设{an}是等差数列,且a1=ln2,a2+a3=5ln2.(1)求{an}的通项公式;(2)求e+e+…+e.解:(1)设{an}的公差为d.因为a2+a3=5ln2,所以2a1+3d=5ln2.又a1=ln2,所以d=
6、ln2.所以an=a1+(n-1)d=nln2.(2)因为e=eln2=2,=e=eln2=2,所以数列{ean}是首项为2,公比为2的等比数列,所以e+e+…+e==2n+1-2.6.(2017·江苏高考)对于给定的正整数k,若数列{an}满足:an-k+an-k+1+…+an-1+an+1+…+an+k-1+an+k=2kan,对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数列”.(1)证明:等差数列{an}是“P(3)数列”;(2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.证明:(1)因为{an}是等差数列,设其
7、公差为d,则an=a1+(n-1)d,从而,当n≥4时,an-k+an+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2an,k=1,2,3,所以an-3+an-2+an-1+an+1+an+2+an+3=6an,因此等差数列{an}是“P(3)数列”.(2)数列{an}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,an-2+an-1+an+1+an+2=4an,①当n≥4时,an-3+an-2+an-1+an+1+an+2+an+3=6an.②由①知,an-3+an-
此文档下载收益归作者所有