1、课时作业44 直线、平面平行的判定及其性质一、选择题1.已知直线a与直线b平行,直线a与平面α平行,则直线b与α的关系为( D )A.平行B.相交C.直线b在平面α内D.平行或直线b在平面α内解析:依题意,直线a必与平面α内的某直线平行,又a∥b,因此直线b与平面α的位置关系是平行或直线b在平面α内.2.已知α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( D )A.垂直B.相交C.异面D.平行解析:对于选项A,当m⊥α时,因为n⊂α,所以m⊥n,可能;对于选项B,当A∈n时,m∩n=A,可能;
2、对于选项C,若A∉n,由异面直线的定义知m,n异面,可能;对于选项D,若m∥n,因为m⊄α,n⊂α,所以m∥α,这与m∩α=A矛盾,不可能平行,故选D.3.(2019·四川乐山四校联考)平面α∥平面β的一个充分条件是( D )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a∥α,a∥β,b⊂βD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:存在一条直线a,a∥α,a∥β,有可能a平行于两平面的交线,该条件不是平面α∥平面β的一个充分条件,故A错;存在一条直线a,a⊂α,a∥β,有可能a平行
3、于两平面的交线,该条件不是平面α∥平面β的一个充分条件,故B错;存在两条平行直线a,b,a∥α,a∥β,b⊂β,有可能a平行于两平面的交线,该条件不是平面α∥平面β的一个充分条件,故C错;存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,据此可得平面α∥平面β,该条件是平面α∥平面β的一个充分条件.故选D.4.(2019·山东泰安二模)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题正确的是( D )A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n解析:对于A,若m
4、∥α,n∥α,则m与n可能平行,可能相交,也可能异面,故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能平行,也可能相交(比如直三棱柱相邻两侧面都与底面垂直),故B错误;对于C,若m∥α,m∥β,则α与β可能平行,也可能相交,故C错误;对于D,垂直于同一平面的两条直线相互平行,故D正确.综上,故选D.5.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AEEB=AFFD=14,H,G分别是BC,CD的中点,则( B )A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形E
5、FGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形解析:如图,由条件知,EF∥BD,EF=BD,HG∥BD,HG=BD,∴EF∥HG,且EF=HG,∴四边形EFGH为梯形.∵EF∥BD,EF⊄平面BCD,BD⊂平面BCD,∴EF∥平面BCD.∵四边形EFGH为梯形,∴线段EH与FG的延长线交于一点,∴EH不平行于平面ADC.故选B.6.已知M,N,K分别为正方体ABCDA1B1C1D1的棱AB,B1C1,DD1的中点,在正方体的所有面对角线和体对角线所在的直线中,与平面MNK平行的直线有( A )A.6条B.7条C.8条D.9条解析:补形得到