欢迎来到天天文库
浏览记录
ID:61622610
大小:402.04 KB
页数:11页
时间:2021-03-04
《2022届高考数学统考一轮复习课后限时集训44直线平面垂直的判定及其性质理含解析新人教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课后限时集训(四十四) 直线、平面垂直的判定及其性质建议用时:40分钟一、选择题1.已知直线l⊥平面α,直线m∥平面β,若α⊥β,则下列结论正确的是( )A.l∥β或l⊂βB.l∥mC.m⊥αD.l⊥mA [直线l⊥平面α,α⊥β,则l∥β或l⊂β,A正确,故选A.]2.已知直线m,n和平面α,β,则下列四个命题中正确的是( )A.若α⊥β,m⊂β,则m⊥αB.若m⊥α,n∥α,则m⊥nC.若m∥α,n∥m,则n∥αD.若m∥α,m∥β,则α∥βB [对于A,若α⊥β,m⊂β,则当m与α,β的交线垂直时才有m⊥α,故A错;对于B,若n∥α,则α内存在直线a,使得
2、a∥n,∵m⊥α,∴m⊥a,∴m⊥n,故B正确;对于C,当n⊂α时,显然结论错误,故C错;对于D,若α∩β=l,则当m∥l时,结论不成立,故D错.故选B.]3.如图,在四面体DABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是( )A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDEC [因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC⊂平
3、面ACD,所以平面ACD⊥平面BDE.]4.(2020·南宁模拟)在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是正方形,且PA=AB=2,则直线PB与平面PAC所成角为( )A.B.C.D.A [连接BD,交AC于点O.因为PA⊥平面ABCD,底面ABCD是正方形,所以BD⊥AC,BD⊥PA.又因为PA∩AC=A,所以BD⊥平面PAC,故BO⊥平面PAC.连接OP,则∠BPO即为直线PB与平面PAC所成角.又因为PA=AB=2,所以PB=2,BO=.所以sin∠BPO==,所以∠BPO=.故选A.]5.(2017·全国卷Ⅲ)在正方体ABCDA1B1C1D
4、1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥ACC [如图,∵A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴选项B,D错误;∵A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴A1E⊥BC1,故选项C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴A1E⊥BC1.)∵A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故选项A错误.故选C.]6.如图所示,在四边形ABCD中,AD∥BC
5、,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中,下列结论正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABCD [∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.又AB⊂平面ABC,∴平
6、面ADC⊥平面ABC.]二、填空题7.如图,在长方体ABCDA1B1C1D1中,AB=BC=2,若该长方体的体积为8,则直线AC1与平面BB1C1C所成的角为.30° [连接BC1(图略),由AB⊥平面BB1C1C知∠AC1B就是直线AC1与平面BB1C1C所成的角.由2×2×AA1=8得AA1=2,∴BC1==2,在Rt△AC1B中,tan∠AC1B===,∴∠AC1B=30°.]8.四面体PABC中,PA=PB=PC,底面△ABC为等腰直角三角形,AC=BC,O为AB中点,请从以下平面中选出两个相互垂直的平面.(只填序号)①平面PAB;②平面ABC;③平面PAC
7、;④平面PBC;⑤平面POC.②⑤(答案不唯一) [∵四面体PABC中,PA=PB=PC,底面△ABC为等腰直角三角形,AC=BC,O为AB中点,∴CO⊥AB,PO⊥AB,CO∩PO=O,∴AB⊥平面POC.∵AB⊂平面ABC,∴平面POC⊥平面ABC,∴两个相互垂直的平面为②⑤.]9.在正四棱柱ABCDA1B1C1D1中,AA1=2AB=2,则点A1到平面AB1D1的距离是. [如图,△AB1D1中,AB1=AD1=,B1D1=,∴△AB1D1的边B1D1上的高为=,∴S=××=,设A1到平面AB1D1的距离为h;则有S△AB1D1×h=S△A1B1D1×AA
此文档下载收益归作者所有