资源描述:
《高考数学第九篇统计与统计案例(、选修1_2)第3节变量的相关性与统计案例习题理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3节 变量的相关性与统计案例【选题明细表】知识点、方法题号变量的相关性1,3回归分析4,6,8,12,13独立性检验2,5,7,11,14综合应用9,10基础巩固(时间:30分钟)1.对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图(1);对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断( C )(A)变量x与y正相关,u与v正相关(B)变量x与y正相关,u与v负相关(C)变量x与y负相关,u与v正相关(D)变量x与y负相关,u与v负相关解析:由图(1)可知,各点整体呈递减趋势,x与y负相关;由图(2
2、)可知,各点整体呈递增趋势,u与v正相关.故选C.2.(2018·湖南邵阳联考)假设有两个分类变量X和Y的2×2列联表为 YX y1y2总计x1a10a+10x2c30c+30总计6040100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为( A )(A)a=45,c=15(B)a=40,c=20(C)a=35,c=25(D)a=30,c=30解析:由题意可得,当与相差越大,X与Y有关系的可能性越大,分析四组选项,A中的a,c的值最符合题意,故选A.3.(2018·甘肃模拟)如表是我国某城市在2018年1月份至10月份各月最低温与最高温(℃)的数据一览表.月份
3、12345678910最高温59911172427303121最低温-12-31-271719232510已知该城市的各月最低温与最高温具有相关关系,根据该一览表,则下列结论错误的是( B )(A)最低温与最高温为正相关(B)每月最高温与最低温的平均值在前8个月逐月增加(C)月温差(最高温减最低温)的最大值出现在1月(D)1月至4月的月温差(最高温减最低温)相对于7月至10月,波动性更大解析:根据题意,依次分析选项,A中,该城市的各月最低气温与最高气温具有相关关系,根据数据分析可知最低气温与最高气温为正相关,A正确;B中,由表中数据,每月的最低气温与最高气温的平均值依次为-3
4、.5,3,5,4.5,12,20.5,23,26.5,28,15.5,在前8个月不是逐月增加的,因此B错误;C中,由表中数据,月温差依次为17,12,8,13,10,7,8,7,6,11,月温差的最大值出现在1月,C正确;D中,根据C中温差的数据可得1月至4月的月温差相对于7月至10月,波动更大,D正确.故选B.4.(2018·贵阳适应)某公司某件产品的定价x与销量y之间的数据统计表如下,根据数据,用最小二乘法得出y与x的线性回归直线方程为=6.5x+17.5,则表格中n的值应为( D )x24568y3040n5070(A)45(B)50(C)55(D)60解析:由题意得,
5、根据题表中的数据可知==5,=,代入回归直线方程可得=6.5×5+17.5⇒n=60,故选D.5.(2018·定兴中学模拟)“真人秀”热潮在我国愈演愈烈,为了了解学生是否喜欢某“真人秀”节目,在某中学随机调查了110名学生,得到如下列联表:男女总计喜欢402060不喜欢203050总计6050110由K2=算得K2=≈7.8.附表:P(K2≥k)0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是( C )(A)在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别有关”(B)在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与
6、性别无关”(C)有99%以上的把握认为“喜欢该节目与性别有关”(D)有99%以上的把握认为“喜欢该节目与性别无关”解析:因为7.8<10.828,所以不能在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别有关”;又因为7.8>6.635,所以有99%以上的把握认为“喜欢该节目与性别有关”,故选C.6.(2018·四川南充一诊)已知变量x与变量y之间具有相关关系,并测得如下一组数据:x651012y6532则变量x与y之间的线性回归直线方程可能为( B )(A)=0.7x-2.3(B)=-0.7x+10.3(C)=-10.3x+0.7(D)=10.3x-0.7解析:根
7、据表中数据,得=(6+5+10+12)=,=(6+5+3+2)=4,且变量y随变量x的增大而减小,是负相关,所以,验证=时,=-0.7×+10.3≈4,即回归直线=-0.7x+10.3过样本点的中心(,).故选B.7.(2018·广州模拟)为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表如下:理科文科总计男131023女72027总计203050已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2=≈4.844,则认为选修