1.2独立性检验的基本思想及其初步应用 (2)

1.2独立性检验的基本思想及其初步应用 (2)

ID:44680090

大小:918.46 KB

页数:11页

时间:2019-10-24

1.2独立性检验的基本思想及其初步应用 (2)_第1页
1.2独立性检验的基本思想及其初步应用 (2)_第2页
1.2独立性检验的基本思想及其初步应用 (2)_第3页
1.2独立性检验的基本思想及其初步应用 (2)_第4页
1.2独立性检验的基本思想及其初步应用 (2)_第5页
资源描述:

《1.2独立性检验的基本思想及其初步应用 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、[学习目标] 1.了解独立性检验的基本思想、方法及其简单应用.2.理解判断两个分类变量是否有关系的常用方法、独立性检验中K2的含义及其实施步骤.知识点一 两个分类变量之间关联关系的定性分析1.分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.这里的“变量”和“值”都应作为“广义”的变量和值进行理解,它们取的不一定是具体的数值.2.列联表列出的两个分类变量的频数表,称为列联表.假设两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(也称为2×2列联表

2、)为:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d3.两个分类变量之间关联关系的定性分析的方法(1)频率分析法:通过对样本的每个分类变量的不同类别事件发生的频率大小进行比较来分析分类变量之间是否有关联关系.通常通过列联表列出两个分类变量的频数表来进行分析.(2)图形分析法:与表格相比,图形更能直观地反映出两个分类变量间是否互相影响,常用等高条形图展示列联表数据的频率特征.知识点二 独立性检验1.定义:利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.2.K2=,其中n

3、=a+b+c+d.3.独立性检验的具体做法(1)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定________k0.(2)利用公式计算随机变量K2的________k.(3)如果________,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则就认为在________________不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中________________________支持结论“X与Y有关系”.题型一 有关“相关的检验”例1 某校对学生课外活动

4、进行调查,结果整理成下表:用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?体育文娱总计男生212344女生62935总计275279  反思与感悟 (1)利用K2=求出K2的观测值k的值.再利用临界值的大小来判断假设是否成立.(2)解题时应注意准确代数与计算,不可错用公式,准确进行比较与判断.跟踪训练1 打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据:患心脏病未患心脏病总计每一晚都打鼾30224254不打鼾241355137

5、9总计5415791633根据独立性检验,能否在犯错误的概率不超过0.001的前提下认为每一晚都打鼾与患心脏病有关系?    题型二 有关“无关的检验”例2 为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.分析学生选报文、理科与对外语的兴趣是否有关?    反思与感悟 运用独立性检验的方法:(1)列出2×2列联表,根据公式计算K2的观测值k.(2)比较k与k0的大小作出

6、结论.跟踪训练2 在一次恶劣天气的飞行航程中调查男女乘客在飞机上晕机的情况如下表所示,根据此资料是否能在犯错误的概率不超过0.05的前提下认为在恶劣天气飞行中男人比女人更容易晕机?晕机不晕机总计男人243155女人82634总计325789    题型三 独立性检验的基本思想例3 某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间(单位:时)的样本数据.(1)应收集多少位女生的样本数据?(2)根据

7、这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图),其中样本数据的分组区间为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否认为“该校学生的每周平均体育运动时间与性别有关”.附:P(K2≥k0)0.1000.0500.0100.005k02.7063.8416.6357.879K2=. 反思与感

8、悟 (1)解答此类题目的关键在于正确利用K2=计算k的值,再用它与临界值k0的大小作比较来判断假设检验是否成立,从而使问题得到解决.(2)此类题目规律性强,解题比较格式化,填表计算分析比较即可,要熟悉其计算流程,不难理解掌握.跟踪训练3 某校高三年级在一次全年级的大型考试中,数学成绩优秀和非优秀的学生中,物理、化学、总分成绩优秀的人数如下表所示,能否在犯错误的概率不超过0.001的前提下认为数学成绩

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。