欢迎来到天天文库
浏览记录
ID:44591551
大小:317.69 KB
页数:8页
时间:2019-10-23
《2019_2020学年高中数学第1章立体几何初步1.2.2空间中的平行关系平行直线、直线与平面平行学案新人教B版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第1课时 平行直线、直线与平面平行学习目标核心素养1.能认识和理解空间直线平行的传递性,了解等角定理.(重点)2.掌握直线与平面平行的判定定理和性质定理,并能利用这两个定理解决空间中的平行关系问题.(重点)3.利用直线与平面平行的判定定理和性质定理证明空间平行问题.(难点)1.通过空间直线平行的传递性及等角定理的学习,培养直观想象的数学核心素养.2.借助直线与平面平行的判定与性质的学习,提升数学抽象、逻辑推理的数学核心素养.1.基本性质4文字表述:平行于同一条直线的两条直线互相平行.这一性质叫做空间平行线的传递性.符号表述:⇒a∥c.2.等角
2、定理如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等.思考:空间中如果两个角的两边分别对应平行,这两个角具有什么关系?[提示] 相等或互补.3.直线与平面的平行位置关系直线a在平面α内直线a与平面α相交直线a与平面α平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=Aa∥α图形表示4.直线与平面平行的判定及性质定理条件结论图形语言符号语言判定不在一个平面内的一条直线和平面内的一条直线平行这条直线和这个平面平行________l⇒l∥α性质一条直线和一个平面平行,经过这条直线的平面和这个平面相
3、交这条直线和这两个平面的交线平行⇒l∥m1.已知AB∥PQ,BC∥QR,若∠ABC=30°,则∠PQR等于( )A.30° B.30°或150°C.150°D.以上结论都不对B [因为AB∥PQ,BC∥QR,所以∠PQR与∠ABC相等或互补.因为∠ABC=30°,所以∠PQR=30°或150°.]2.下列条件中能确定直线a与平面α平行的是( )A.a⊄α,b⊂α,a∥bB.b⊂α,a∥bC.b⊂α,c⊂α,a∥b,a∥cD.b⊂α,A∈a,B∈a,C∈b,D∈b,且AC=BDA [由直线与平面平行的判定定理知选A.]3.正方体A
4、BCDA1B1C1D1中,E,F分别是线段C1D,BC的中点,则直线A1B与直线EF的位置关系是________.相交 [直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.]基本性质4、等角定理的应用【例1】 如图,在正方体ABCDA1B1C1D1中,M,M1分别是棱AD和A1D1的中点.(1)求证:四边形BB1M1M为平行四边形;(2)求证:∠BMC=∠B1M1C1.[思路探究] (1)欲证四边形BB1M1M是平行四边形,可证其一组对边平行且相等;(2)可结合(1)利用等角定理证明或利用
5、三角形全等证明.[证明] (1)∵ABCDA1B1C1D1为正方体.∴AD=A1D1,且AD∥A1D1,又M、M1分别为棱AD、A1D1的中点,∴AM=A1M1且AM∥A1M1,∴四边形AMM1A1为平行四边形,∴MM1=AA1且MM1∥AA1.又AA1=BB1且AA1∥BB1,∴MM1=BB1且MM1∥BB1,∴四边形BB1M1M为平行四边形.(2)法一 由(1)知四边形BB1M1M为平行四边形,∴B1M1∥BM.同理可得四边形CC1M1M为平行四边形,∴C1M1∥CM.∵∠BMC和∠B1M1C1方向相同,∴∠BMC=∠B1M1C1.法二
6、由(1)知四边形BB1M1M为平行四边形,∴B1M1=BM.同理可得四边形CC1M1M为平行四边形,∴C1M1=CM.又∵B1C1=BC,∴△BCM≌△B1C1M1,∴∠BMC=∠B1M1C1.1.空间两条直线平行的证明一是定义法:即证明两条直线在同一个平面内且两直线没有公共点;二是利用平面图形的有关平行的性质,如三角形中位线,梯形,平行四边形等关于平行的性质;三是利用基本性质4:找到一条直线,使所证的直线都与这条直线平行.2.求证角相等一是用等角定理;二是用三角形全等或相似.1.如图,已知E,F,G,H分别是空间四边形ABCD的边AB,BC
7、,CD,DA的中点.(1)求证:E,F,G,H四点共面;(2)若四边形EFGH是矩形,求证:AC⊥BD.[证明] (1)在△ABD中,∵E,H分别是AB,AD的中点,∴EH∥BD.同理FG∥BD,则EH∥FG.故E,F,G,H四点共面.(2)由(1)知EH∥BD,同理AC∥GH.又∵四边形EFGH是矩形,∴EH⊥GH.故AC⊥BD.直线与平面的位置关系【例2】 下列说法:①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.其中说法正确的个数为( )A.0个
8、B.1个C.2个D.3个B [对于①,直线a在平面α外包括两种情况:a∥α或a与α相交,∴a和α不一定平行,∴①说法错误.对于②,∵直线a∥b,b⊂α,则只能说明a
此文档下载收益归作者所有