资源描述:
《江苏省徐州市2019届高三上学期期中质量抽测数学考试试题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、绝密★启用前2019届徐州市高三第一学期期中抽测考试数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题〜第20题,共20题)。本卷满分为160分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。4.作答试题,必须用0・5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。填空题:本大题共14小题,每小题5分,共70分.
2、请把答案填写在答题卡相应位置.1.已知集合A={1,2,3,4},B={0,2,4,6},则AB=▲.2.若复数z满足i・z=l+2i(其中i为虚数单位),则z的模为▲.3.某水产养殖场利用100个网箱养殖水产品,收获时测虽各箱水产品的产塑(单位:kg),其频率分布直方图如图所示,则该养殖场有▲个网箱产量不低于50kg.开始M<-0A^3n-2n4.右图是一个算法的流程图,则输出的斤的值是一▲.5.已知双曲线—-^-=1的离心率为羽,则实数a的值为▲.a46.已知袋屮装有大小相同、质地均匀的2个红球和3个白球,从屮一次摸出2个,恰有1个是红球的概率为▲•7.已知等差数列{%
3、}的前〃项和为S”,»=132,条+他=30,则如的值为▲.JT8.已知函数/(x)=2sin(2r——),若/(^)-/(^2)=-4,且xx,x2,则x}-x2的最大值为1.已知奇函数=/(x)是R上的单调函数,若幣数^x)=f(x)+f(a-x2)只有一个零点,则实数。的値为▲•2.如图,已知正方体ABCD-4BS错误味找到引用源。的棱长为1,点P为棱曲
4、上任意一AB=3f点,则四棱锥P-BDD}B}错误味找到引用源。的体积为▲.AD=1,ZB4D=60°,若CE=2ED,则AEBE的值为▲•12.己知正实数满足d+2b=l,贝【J(l+丄)(2+-)的最小侑为▲.a
5、h13.过点P(2,0)的直线/与圆C:x2+(y-b)2=b2交于两点A,B,若A是PB的中点,则实数〃的取値范SI是—▲.14.已知函数f(x)=xx2-a-a,若/(兀)有三个零点,则实数a的取值范围是_▲.二.解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或计算步骤.15.(本小题满分14分)在△ABC中,角A.B.C的对边分别为a,b,c,已知2cos2B—4cos(A+C)=l.(1)求角3的值;(2)若cos^=—,c=3,求AABC的面积.1316.(本小题满分14分)如图,在三棱锥S-ABC中,分别为4B,的屮
6、点,点F在AC上,且SD丄底面ABC.(1)求证:DE//平面SAC;(2)若SF丄AC,求证:平面SFD丄平面SAC.(第16题“17.(本小题满分14分)已知椭圆C:二+賽=l(d>b〉o)错误!未找到引用源。,过右焦点F(1,O)的直线/与椭圆C交于C广Zr两点,错误!未找到引用源。且当点B是椭圆C的上顶点时,FB=2FA错误!未找到引用源。错误!未找到引用源。,线段佔错误!未找到引用源。的中点为M错误!未找到引用源。.(1)求椭圆C的方程;(2)延长线段0M错误!未找到引用源。与椭圆C错误!未找到引用源。交于点P错误!未找到引用源。,若04=3尸错误!未找到引用源。
7、,求此时错误!未找到引用源。的方程.(本小题满分16分)某地拟规划种植一批芍药,为了美观,将种植区域(区域I)设计成半径为lkm的扇形E4F,7tJT中心角乙EAF=0.为方便观赏,增加收入,在种植区域外闱规划观赏区(区域42II)和休闲区(区域III),并将外围区域按如图所示的方案扩建成正方形ABCDf其屮点E,F分别在边BC和CD上.己知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.(1)要使观赏区的年收入不低于5万元,求&的最大值;(2)试问:当0为多少时,年总收入最大?AJ(第18题)319.(本小题满分16分)设函f(x)=x-a
8、x2+ax,aeR.(1)当a=l时,求函数/(x)的在点(2,/(2))处的切线方程;(2)讨论函数y=f(x)的单调性,并写出单调区间;(3)当。>()时,若函数=/(%)有唯一零点,求实数。的值.20.(本小题满分16分)已知数列{陽}各项均为正数,a}=,a2=3,且an+an+3=an+x+an+2对任意hgN*恒成立.(1)若Oy=4,求%的值;(2)若色=5,(i)求证:数列{陽}是等差数列;(ii)在数列{色}中,对任意hgN总存在777,Z:eN*,(其屮n