欢迎来到天天文库
浏览记录
ID:44398242
大小:367.00 KB
页数:12页
时间:2019-10-21
《平行四边形动点与存在性问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、........环球雅思学科教师辅导讲义组长签字:学员编号:年级:八年级课时数:3学员姓名:辅导科目:数学学科教师:赵文娜授课日期及时段教学目标重点难点教学内容平行四边形动点及存在性问题【例1】正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为。【练习1】如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点. (1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标; (2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周
2、长最小时,求点E、F的坐标.参考.资料........【例3】 如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当三角形△ODP是腰长为5的等腰三角形时,P的坐标为;【练习2】如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)
3、(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.参考.资料........【例4】(1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为;(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.【练习3】如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是
4、(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.参考.资料........【例5】在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时
5、间是ts(06、为t秒()(1)点E的坐标为,F的坐标为;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.参考.资料........【巩固练习】1、菱形ABCD中,AB=2,∠BAD=60°,点E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为。第1题图第2题图第3题图第4题图2、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG,在旋转过程中,DG的最大值是____7、_____;最小值是__________.3、已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,连接AE,BG,若BC=DE=4,将正方形DEFG绕点D旋转,当AE取最小值时,AF=.4、在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8。过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线上的T处,折痕为MN.当点T在直线上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为____.5、如图,在梯形ABCD中,AD∥BC,∠B=90°,A
6、为t秒()(1)点E的坐标为,F的坐标为;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.参考.资料........【巩固练习】1、菱形ABCD中,AB=2,∠BAD=60°,点E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为。第1题图第2题图第3题图第4题图2、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG,在旋转过程中,DG的最大值是____
7、_____;最小值是__________.3、已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,连接AE,BG,若BC=DE=4,将正方形DEFG绕点D旋转,当AE取最小值时,AF=.4、在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8。过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线上的T处,折痕为MN.当点T在直线上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为____.5、如图,在梯形ABCD中,AD∥BC,∠B=90°,A
此文档下载收益归作者所有