欢迎来到天天文库
浏览记录
ID:43808133
大小:430.42 KB
页数:9页
时间:2019-10-14
《(浙江专用)高考数学讲练测专题1.2命题及其关系、逻辑联结词、充分条件与必要条件(讲)(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第02讲命题及其关系、逻辑联结词、充分条件与必要条件---讲1.理解原命题和原命题的逆命题、否命题、逆否命题的含义,及其相互之间的关系.2.了解逻辑联结词“且”、“或”、“非”的含义.3.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.4.高考预测:命题重点主要集中在以函数、方程、不等式、立体几何线面关系、数列等为背景的充分条件和必要条件的判定.从近5年命题看,其在试卷中的位置基本稳定在选择题第5、6小题..5.备考重点:(1)命题的真假的判断;(2)充分
2、条件、必要条件的判断知识点1.命题及其关系(1)命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.(2)四种命题及相互关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.【典例1】【浙江省浙南名校联盟2019届高三上期末】设是方程的两个不等实根,记.下列两个命题:①数列的任意一项都是正整数;②数列第5项为10.()A.①正确,②错误B.①错误,②正确C.
3、①②都正确D.①②都错误【答案】A【解析】因为是方程的两个不等实根,所以1,,因为,所以,即当时,数列中的任一项都等于其前两项之和,又1,,所以,,,以此类推,即可知:数列的任意一项都是正整数,故①正确;②错误;因此选A.【规律方法】1.正确的命题要有充分的依据,不一定正确的命题要举出反例,这是最基本的数学思维方式,也是两种不同的解题方向,有时举出反例可能比进行推理论证更困难,二者同样重要.2.判断四种形式的命题真假的基本方法是先判断原命题的真假,再判断逆命题的真假,然后根据等价关系确定否命题和逆否命题的
4、真假.如果原命题的真假不好判断,那就首先判断其逆否命题的真假.【变式1】【山东省枣庄市2019届高三上期末】有如下命题:①函数,,,中有三个在上是减函数;②函数有两个零点;③若,则其中真命题的个数为()A.B.C.D.【答案】D【解析】由题①函数,,,中,根据函数的单调性易知,,,三个函数在上是减函数,在R上递增的,故①正确;②令函数=0化简:=x+2,作出图像有两个交点,故由两个零点;②正确;③若,因为为单调递减函数,所以故③正确.故选D知识点2.逻辑联结词(1)用联结词“且”联结命题p和命题q,记作_
5、___,读作______”.(2)用联结词“或”联结命题p和命题q,记作_____,读作“____”.(3)对一个命题p全盘否定,就得到一个新命题,记作_____,读作“_____”.(4)命题p且q、p或q、非p的真假判断【典例2】【2017山东】已知命题p:;命题q:若,则a6、因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.“pq”“pq”“p”形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“pq”“pq”“p”形式命题的真假.3.含逻辑联结词命题真假的等价关系(1)pq真⇔p,q至少一个真⇔(p)(q)假.(2)pq假⇔p,q均假⇔(p)(q)真.(3)pq真⇔p,q均真⇔(p)(q)假.(4)pq假⇔p,q至少一个假⇔(p)(q)真.(5)p真⇔p假;p假⇔p真.4.命题p且q、p或q7、、非p的真假判断规律:pq中p、q有一假为假,pq有一真为真,p与非p必定是一真一假.【变式2】【新疆乌鲁木齐市2018届高三第二次质量监测】命题若,则,是的逆命题,则()A.真,真B.真,假C.假,真D.假,假【答案】C【解析】由题意,,所以,得,所以命题为假命题,又因为是的逆命题,所以命题:若,则为真命题,故选C.知识点3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充要条件.【典例3】【2019年高考浙江】若a>0,b>0,则“a+b8、≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.故选A.【规律方法】充要关系的几种判断方法(1)定义法:若,则是的充分而不必要条件;若,则是的必要而不充分条件;若,则是的充要条件;若,则是的既不充分也不必要条件.(2)等价法:即利用与;与;与的等价
6、因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.“pq”“pq”“p”形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“pq”“pq”“p”形式命题的真假.3.含逻辑联结词命题真假的等价关系(1)pq真⇔p,q至少一个真⇔(p)(q)假.(2)pq假⇔p,q均假⇔(p)(q)真.(3)pq真⇔p,q均真⇔(p)(q)假.(4)pq假⇔p,q至少一个假⇔(p)(q)真.(5)p真⇔p假;p假⇔p真.4.命题p且q、p或q
7、、非p的真假判断规律:pq中p、q有一假为假,pq有一真为真,p与非p必定是一真一假.【变式2】【新疆乌鲁木齐市2018届高三第二次质量监测】命题若,则,是的逆命题,则()A.真,真B.真,假C.假,真D.假,假【答案】C【解析】由题意,,所以,得,所以命题为假命题,又因为是的逆命题,所以命题:若,则为真命题,故选C.知识点3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充要条件.【典例3】【2019年高考浙江】若a>0,b>0,则“a+b
8、≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.故选A.【规律方法】充要关系的几种判断方法(1)定义法:若,则是的充分而不必要条件;若,则是的必要而不充分条件;若,则是的充要条件;若,则是的既不充分也不必要条件.(2)等价法:即利用与;与;与的等价
此文档下载收益归作者所有