欢迎来到天天文库
浏览记录
ID:43742804
大小:810.01 KB
页数:9页
时间:2019-10-13
《高中数学直线和圆知识点复习总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高中数学直线和圆知识点复习总结直线和圆知识梳理【一】【直线的方程】1.斜率与倾斜角:,(1)时,;(2)时,不存在;(3)时,(4)当倾斜角从增加到时,斜率从增加到;当倾斜角从增加到时,斜率从增加到2.直线方程(1)点斜式:(2)斜截式:(3)两点式:(4)截距式:(5)一般式:3.距离公式(1)点,之间的距离:(2)点到直线的距离:(3)平行线间的距离:与的距离:4.位置关系(1)截距式:形式重合: 相交:平行:垂直:(2)一般式:形式重合:且且平行:且且9/9高中数学直线和圆知识点复习总结垂直:相交:
2、5.直线系表示过两直线和交点的所有直线方程(不含)【二】【圆】1.圆的方程(1)标准形式:()(2)一般式:()(3)参数方程:(是参数)【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以,为直径的圆的方程是:2.位置关系(1)点和圆的位置关系:当时,点在圆内部当时,点在圆上当时,点在圆外(2)直线和圆的位置关系:判断圆心到直线的距离与半径的大小关系当时,直线和圆相交(有两个交点);当时,直线和圆相切(有且仅有一个交点);当时,直线和圆相离(无交点);9/9高中数学直线和圆知识点复
3、习总结3.圆和圆的位置关系判断圆心距与两圆半径之和,半径之差()的大小关系当时,两圆相离,有4条公切线;当时,两圆外切,有3条公切线;当时,两圆相交,有2条公切线;当时,两圆内切,有1条公切线;当时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:【三】【初中圆的理论汇编】一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1
4、、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内点在圆内;2、点在圆上点在圆上;3、点在圆外点在圆外;9/9高中数学直线和圆知识点复习总
5、结三、直线与圆的位置关系1、直线与圆相离无交点;2、直线与圆相切有一个交点;3、直线与圆相交有两个交点;四、圆与圆的位置关系外离(图1)无交点;外切(图2)有一个交点;相交(图3)有两个交点;内切(图4)有一个交点;内含(图5)无交点;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3
6、定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①是直径②③④弧弧⑤弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。即:在⊙中,∵∥∴弧弧六、圆心角定理9/9高中数学直线和圆知识点复习总结圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①;②;③;④弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:∵和是弧所对的
7、圆心角和圆周角∴2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙中,∵、都是所对的圆周角∴推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙中,∵是直径或∵∴∴是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在△中,∵∴△是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等
8、.八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。9/9高中数学直线和圆知识点复习总结即:在⊙中,∵四边形是内接四边形∴九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵且过半径外端∴是⊙的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线
此文档下载收益归作者所有