2019届安徽省高三皖南八校第一次联考数学(理)(解析版)

2019届安徽省高三皖南八校第一次联考数学(理)(解析版)

ID:43737321

大小:3.95 MB

页数:18页

时间:2019-10-13

2019届安徽省高三皖南八校第一次联考数学(理)(解析版)_第1页
2019届安徽省高三皖南八校第一次联考数学(理)(解析版)_第2页
2019届安徽省高三皖南八校第一次联考数学(理)(解析版)_第3页
2019届安徽省高三皖南八校第一次联考数学(理)(解析版)_第4页
2019届安徽省高三皖南八校第一次联考数学(理)(解析版)_第5页
资源描述:

《2019届安徽省高三皖南八校第一次联考数学(理)(解析版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、“皖南八校”2019届高三第一次联考数学(理科)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题題5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合,则AB=A.B.C.D.【答案】D【解析】【分析】利用一元二次不等式的解法化简集合,由交集的定义可得结果.【详解】因为集合或,所以,,故选D.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.设是虚数单位,且,则实数k

2、=A.2B.1C.0D.【答案】C【解析】【分析】由虚数单位的运算法则化简,利用复数相等的性质可得结果.【详解】因为,所以可得,故选C.【点睛】本题主要考查虚数单位的运算法则以及复数相等的性质,属于简单题3.函数且是增函数的一个充分不必要条件是18第页A.B.C.D.【答案】C【解析】【分析】利用指数函数的单调性,结合充分条件与必要条件的定义求解即可.【详解】与是函数且为增函数的既不充分又不必要条件;是函数且为增函数的充要条件;可得,不等得到,所以是函数且是增函数的一个充分不必要条件,故选C.【点睛】判断充要条件应注意

3、:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.4.偶函数在上是增函数,且,则满足的实数的取值范围是A.(1,2)B.(-1,0)C.(0,1)D.(-1,1)【答案】A【解析】【分析】由偶函数在上是增函数,可得函数在上是减函数,结合,原不等式转化为,根据绝对值不等式的解法与指数函数的性质可得结果.【详解】因为偶函数在上

4、是增函数,所以函数在上是减函数,由且满足,等价于,,可得,实数的取值范围是,故选A.【点睛】本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.18第页将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.5.如图在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,,F为AE的中点,则A.B.C.D.【答案】B【解析】【分析】直接根据平面向

5、量加法与减法的运算法则化简求解即可.【详解】根据平面向量的运算法则;因为所以,故选B.【点睛】本题主要考查向量的几何运算及外接圆的性质、向量的夹角,属于难题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).6.若函数在区间(-a,a)上是单调函数,则实数a的取值范围是

6、A.B.C.D.【答案】D【解析】【分析】求出函数在上递增,由可得结果.18第页【详解】函数函数可化为,由可得函数的单调增区间为由可得,实数的取值范围是,故选D.【点睛】函数的单调区间的求法:(1)代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2)图象法:画出三角函数图象,利用图象求函数的单调区间.7.设不等式组,所表示的平面区城为M,若直线的图象经过区域M,则实数k的取值范围是A.B.C.D.【答案】A【解析

7、】【分析】画出不等式组表示的可行域,将问题转化为可行域内的点与连线的斜率的范围求解即可.【详解】18第页画出不等式组表示的可行域,如图,恒过,即为可行域内的点与连线的斜率,由图可知,,即实数的取值范围是,故选A.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求

8、出最值.8.设是等差数列,,且,则=A.59B.64C.78D.86【答案】D【解析】【分析】由可得,利用“累加法”,结合等差数列的求和公式可得结果.【详解】设的公差为,则,又,时,,,故选D.【点睛】等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。