资源描述:
《专题04立体几何-2018年高考数学考前回归课本之典型考点练习指导含解析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、专题四立体几何【高考考点再现】立体儿何是高中数学的主干知识.课程标准下的高中数学教材螺旋式地安排了两部分内容:《数学2》(必修);《数学》(选修2-1)——“空间几何体”、“点、直线、平面之间的位置关系”、作为高考必考内容,立体几何主要考查学生的空间想象能力、推理论证能力、运算求解能力等•考查立体几何的题型题序相对稳定.试卷常常设置两道小题(大部分以选择题形式呈现,有时也以填空题的形式呈现),一道解答题,合计22分.小题一道相对容易、一道中等或中偏上难度(有时在压轴题的位置);解答题一般在18或19题的位置,属中档题,难度不是太大.
2、【典型考点分析】【名师点评】高考屮的立体几何基本题型可能归纳为:(一)求解空间儿何体的表面积和体积,主要有三个方面:一是求柱体、锥体的表面积和体积;二是求简单组合体的表面积和体积;三是以球为背景求空间儿何体的表面积和体积.特别地,已知空间儿何体的三视图求其表面积、体积已成为近儿年高考考查的热点2—・(二)空间点、线、面位置关系问题.高考对该部分的考查重点是空间的平行关系和垂直关系的证明,一般以解答题的第(1)小题的形式出现,也可能以选择题或者填空题的方式考查空间位置关系的基本定理在判断线面位置关系中的应用.(三)利用空间向量解决立体
3、几何中的位置关系与空间角、距离问题.此类考法是高考理科对立体几何的常规考法,多以解答题为主,主要考查空间坐标系的建立及空间向量坐标的运算能力及应用能力,运算能力要求较高.(四)平面图形的翻折问题.此类问题通常是把平面图形折叠成空间几何体,并以此为载体考查线线、线面、面面的位置关系及有关计算.(五)立体儿何中的探索性问题.此类问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.例1.(2017年新课标I卷理9)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰
4、直角三角形.该多面体的各个而中有若干个是梯形,这些梯形的面积Z和为().(A)10(B)12(C)14(D)16【解析】解法1、该几何体的直观图由一个棱柱和与它等底面的棱锥组合而成的简单组合体,•■2xi(2+4)x2=12如图,该儿何体表面只有两个相同梯形的面,所以含梯形的而积Z和为L2」,故选B.解法2、依题意,把所求的多血体补成三棱柱,所求的多血体ABCEFU为三棱柱切去一部分,如图所示,该儿何体的各个平面中只有两个相同的梯形的面,所以这两个直角梯形面积2xlx(2+4)x2=12之和为2.故选B.B【名师点评】本题以三棱柱、
5、三棱锥为载体,考查三视图还原为几何体后的指泄表面积的讣算,考查学生空间想象能力、推理论证能力.解法1的求解的关键是利用“长对正,宽相等,高平齐〃来确定空间儿何体的形状及其结构特征,并且熟练掌握对棱柱、棱锥这两种基木儿何体模型•解法2的求解的关键是活用“割补法”,运用割补法处理一些比较复杂的几何体的体积计算问题,实际上是“转化〃与“化归〃的数学思想方法的灵活运用.例2.(2016高考新课标1卷理11)平面c过正方体ABCD-A^C^的顶点Ata//平面CBiDifl平面ABCD=m,平面ABB^n,则m、n所成角的正弦值为(A)2V2
6、⑻2(C)31(D)E【解析】解法1、如图:设平面Cga平面朋仞=加:平面却门平面月码,心因为平面C5Q::所以朋/切冷//心则他X所成的角等于码川所成的角•延长肋;过2作M!§C旌接C£,Bg,则CE为"八同理以斤为心而反〉CE,B苗!⑷贝M*,川所成的角即为衲BD所成的角:即为60。,故W,n所成角的正弦值为吃:选A.2解法2、如图,过点A补做一个与正方体ABCD-A^C^相同棱长的正方体,易知m,门所成角为/轲,因为回耳为正三角形,所以smZ£4^=an60=T,故选A.【评析】本题是平面的截面问题,考查面面平行的性质定理在判
7、断异面直线所成的角中的应用.求解本题的关键是作出界面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.本题用到了补形求解问题的方法.另外,在小题中考查空间位置关系的基本定理在判断线面位置关系中的应用,体现了创新性.例3.(2017年新课标1卷理16)如图,圆形纸片的圆心为0,半径为5cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,DBC,bECA、'FAB分别是以BC,CA,4B为底边的等腰三角形.沿虚线剪开后,分别以3C,C4,AB为折痕折起氐DBC,△ECA,4FAB,使得D,E
8、,F重合,得到三棱锥.当MBC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为•【解析】解法1、连接°。交%于点丹(如图所示),因为6,即術的长度与恥的长度成正比.设°Hy,则眈=畑邛=57,三棱锥的高舟=』血_鈕=j25-10