欢迎来到天天文库
浏览记录
ID:43662919
大小:740.51 KB
页数:30页
时间:2019-10-12
《2017年江苏省南京市、盐城市高考数学二模试卷(解析版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2017年江苏省南京市、盐城市高考数学二模试卷 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.函数f(x)=ln的定义域为 .2.若复数z满足z(1﹣i)=2i(i是虚数单位),是z的共轭复数,则= .3.某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲、乙不在同一兴趣小组的概率为 .4.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:不喜欢戏剧喜欢戏剧男性青年观众4010女性青年观众4060现要在所有参与调查的人中用分层抽样的方法抽取n个人
2、做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n的值为 .5.根据如图所示的伪代码,输出S的值为 .6.记公比为正数的等比数列{an}的前n项和为Sn.若a1=1,S4﹣5S2=0,则S5的值为 .7.将函数f(x)=sinx的图象向右平移个单位后得到函数y=g(x)的图象,则函数y=f(x)+g(x)的最大值为 .8.在平面直角坐标系xOy中,抛物线y2=6x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率k=﹣,则线段PF的长为 .9.若sin(α﹣)=,α∈(0,),则cosα的值为
3、.10.α,β为两个不同的平面,m,n为两条不同的直线,下列命题中正确的是 第30页(共30页)(填上所有正确命题的序号).①若α∥β,m⊂α,则m∥β;②若m∥α,n⊂α,则m∥n;③若α⊥β,α∩β=n,m⊥n,则m⊥β;④若n⊥α,n⊥β,m⊥α,则m⊥β.11.在平面直角坐标系xOy中,直线l1:kx﹣y+2=0与直线l2:x+ky﹣2=0相交于点P,则当实数k变化时,点P到直线x﹣y﹣4=0的距离的最大值为 .12.若函数f(x)=x2﹣mcosx+m2+3m﹣8有唯一零点,则满足条件的实数m组成的集合为 .13.已知平面向量=(1,2
4、),=(﹣2,2),则•的最小值为 .14.已知函数f(x)=lnx+(e﹣a)x﹣b,其中e为自然对数的底数.若不等式f(x)≤0恒成立,则的最小值为 . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.如图,在△ABC中,D为边BC上一点,AD=6,BD=3,DC=2.(1)若AD⊥BC,求∠BAC的大小;(2)若∠ABC=,求△ADC的面积.16.如图,四棱锥P﹣ABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.第30
5、页(共30页)17.在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.(1)当a=90时,求纸盒侧面积的最大值;(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.18.如图,在平面直角坐标系xOy中,焦点在x轴上的椭圆C:+=1经过点(b,2e),其中e为椭圆C的离心率.过点T(1,0)作斜率为k(k>0)的直线l交椭圆C于A,B两点
6、(A在x轴下方).(1)求椭圆C的标准方程;(2)过点O且平行于l的直线交椭圆C于点M,N,求的值;(3)记直线l与y轴的交点为P.若=,求直线l的斜率k.第30页(共30页)19.已知函数f(x)=ex﹣ax﹣1,其中e为自然对数的底数,a∈R.(1)若a=e,函数g(x)=(2﹣e)x.①求函数h(x)=f(x)﹣g(x)的单调区间;②若函数F(x)=的值域为R,求实数m的取值范围;(2)若存在实数x1,x2∈[0,2],使得f(x1)=f(x2),且
7、x1﹣x2
8、≥1,求证:e﹣1≤a≤e2﹣e.20.已知数列{an}的前n项和为Sn,数列{bn
9、},{cn}满足(n+1)bn=an+1﹣,(n+2)cn=﹣,其中n∈N*.(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn,求证:数列{an}是等差数列. 数学附加题[选做题]在21、22、23、24四小题中只能选做2题,每小题0分,共计20分.解答应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲]21.如图,△ABC的顶点A,C在圆O上,B在圆外,线段AB与圆O交于点M.(1)若BC是圆O的切线,且AB=8,BC=4,求线段AM的长度;(2)若线段BC与圆O
10、交于另一点N,且AB=2AC,求证:BN=2MN. [选修4-2:矩阵与变换]22.设a,b∈
此文档下载收益归作者所有