资源描述:
《复变函数和积分变(北京邮电大学)课后的习题答案解析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、......word..完美整理,精品文档...复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案......专业资料,可供参考.下载.分享.........word..完美整理,精品文档.........专业资料,可供参考.下载.分享.........word..完美整理,精品文档...习题一1.用复数的代数形式a+ib表示下列复数.①解②解:③解:④解:2.求下列各复数的实部和虚部(z=x+iy)R);①:∵设z=x+iy则∴,.②解:设z=x+iy∵∴,.③解:∵∴,.④解:∵∴,.⑤解:∵.∴当时,,;当时,,.3.求
2、下列复数的模和共轭复数①解:.②解:③解:.④解:4、证明:当且仅当时,z才是实数.证明:若,设,则有 ,从而有,即y=0∴z=x为实数.......专业资料,可供参考.下载.分享.........word..完美整理,精品文档...若z=x,x∈¡,则.∴.命题成立.5、设z,w∈£,证明:证明∵∴.6、设z,w∈£,证明下列不等式.并给出最后一个等式的几何解释.证明:在上面第五题的证明已经证明了.下面证.∵.从而得证.∴几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式①解:其中.②解:其中.③解:④解
3、:.∴⑤解:解:∵.∴8.计算:(1)i的三次根;(2)-1的三次根;(3)的平方根.⑴i的三次根.解:∴. ⑵-1的三次根解:∴......专业资料,可供参考.下载.分享.........word..完美整理,精品文档...⑶的平方根.解:∴∴.9.设.证明:证明:∵ ∴,即.∴又∵n≥2.∴z≠1从而11.设是圆周令,其中.求出在a切于圆周的关于的充分必要条件.解:如图所示.因为={z:=0}表示通过点a且方向与b同向的直线,要使得直线在a处与圆相切,则CA⊥.过C作直线平行,则有∠BCD=β,∠ACB=90°故α-β=90°所以在α处切于圆周T
4、的关于β的充要条件是α-β=90°.12.指出下列各式中点z所确定的平面图形,并作出草图.解:(1)、argz=π.表示负实轴.(2)、
5、z-1
6、=
7、z
8、.表示直线z=.(3)、1<
9、z+i
10、<2解:表示以-i为圆心,以1和2为半径的周圆所组成的圆环域。(4)、Re(z)>Imz.解:表示直线y=x的右下半平面......专业资料,可供参考.下载.分享.........word..完美整理,精品文档...5、Imz>1,且
11、z
12、<2.解:表示圆盘内的一弓形域。习题二1.求映射下圆周的像.解:设则因为,所以所以,所以即,表示椭圆.2.在映射下,下列z平
13、面上的图形映射为w平面上的什么图形,设或.(1);(2);(3)x=a,y=b.(a,b为实数)解:设所以(1)记,则映射成w平面内虚轴上从O到4i的一段,即(2)记,则映成了w平面上扇形域,即(3)记,则将直线x=a映成了即是以原点为焦点,张口向左的抛物线将y=b映成了即是以原点为焦点,张口向右抛物线如图所示.3.求下列极限.(1);......专业资料,可供参考.下载.分享.........word..完美整理,精品文档...解:令,则.于是.(2);解:设z=x+yi,则有显然当取不同的值时f(z)的极限不同所以极限不存在.(3);解:=.(4
14、).解:因为所以.4.讨论下列函数的连续性:(1)解:因为,若令y=kx,则,因为当k取不同值时,f(z)的取值不同,所以f(z)在z=0处极限不存在.从而f(z)在z=0处不连续,除z=0外连续.(2)解:因为,所以所以f(z)在整个z平面连续.5.下列函数在何处求导?并求其导数.(1)(n为正整数);解:因为n为正整数,所以f(z)在整个z平面上可导..(2).解:因为f(z)为有理函数,所以f(z)在处不可导.从而f(z)除外可导.(3).解:f(z)除外处处可导,且.(4).解:因为.所以f(z)除z=0外处处可导,且.6.试判断下列函数的可
15、导性与解析性.......专业资料,可供参考.下载.分享.........word..完美整理,精品文档...(1);解:在全平面上可微.所以要使得,,只有当z=0时,从而f(z)在z=0处可导,在全平面上不解析.(2).解:在全平面上可微.只有当z=0时,即(0,0)处有,.所以f(z)在z=0处可导,在全平面上不解析.(3);解:在全平面上可微.所以只有当时,才满足C-R方程.从而f(z)在处可导,在全平面不解析.(4).解:设,则所以只有当z=0时才满足C-R方程.从而f(z)在z=0处可导,处处不解析.7.证明区域D内满足下列条件之一的解析函
16、数必为常数.(1);证明:因为,所以,.所以u,v为常数,于是f(z)为常数.(2)解析.证明:设在D内解析