浙江大学微积分历年试题解答

浙江大学微积分历年试题解答

ID:43493607

大小:363.31 KB

页数:38页

时间:2019-10-08

浙江大学微积分历年试题解答_第1页
浙江大学微积分历年试题解答_第2页
浙江大学微积分历年试题解答_第3页
浙江大学微积分历年试题解答_第4页
浙江大学微积分历年试题解答_第5页
资源描述:

《浙江大学微积分历年试题解答》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、浙江大学微积分(1)历年试题分类解答目录一.极限与连续......................................................................................2二.导数与微分....................................................................................12三.不定积分....................................................

2、....................................23四.定积分及其应用............................................................................26五.级数............................................................................................33第1页浙江大学微积分(1)历年试题分类解答浙江大学《微积分(1)》历年期末考试试题一

3、.极限与连续函数极限计算的一般方法:(1)先确定极限的类型;特别要注意在哪一点求极限.(2)经过初等变换和无穷小量的等价,化简函数表达式(使求导计算尽可能简单);(3)分母若为低阶(2-3阶)无穷小量,可用LHosptial¢法则;若为高阶无穷小量,可考虑用Taylor展开,不过在应用Taylor展开时,要求对有关展开式比较熟悉;否则还是“慎用”.常见的等价无穷小量:·当x®0时,常见的等价无穷小量:x(1)sinx~x;(2)tanx~x;(3)ln(1+x)~x;(4)e-~1x;2xa(5)arctanx~x;(6)a

4、rcsinx~x;(7)1cos-x~;(8)(1+x)-~1ax.2常见函数的Maclaurin展开式:5·常见函数的Maclaurin展开式:(最高展开到x)2335xxx3xx5(1)e=++1x++ox();(2)sinx=-x++ox();2!3!3!5!243xx4x255(3)cosx=-1++ox();(4)tanx=+x+x+ox();2!4!315335x355xx5(5)arcsinx=+x+x+ox();(6)arctanx=-x++ox()6403523xx3aaa(-1)22(7)ln(1+x)=

5、-x++ox();(8)(1+x)=+1ax+x+ox().232!两个重要极限:1sinx1xx(1)lim=1;(2)lim(1+)==elim(1+x).x®0xx®¥xx®0第2页浙江大学微积分(1)历年试题分类解答关于¥“1”型极限的计算:gx()A设lim()fx=0lim(),gx=¥,且lim()()fxgx=A,则:lim1(+fx())=e.x®ax®ax®ax®agx()ln1(+fx())由于limln1(+fx())=lim´[()()]fxgx=A,x®ax®afx()gx()A根据连续函数的性质

6、,lim1(+fx())=e.x®afxgx()()1gx()éùA此类极限计算的说明:lim1(+fx())=lim1ê(+fx())fx()ú=e.x®ax®aëû一些常见函数的极限:aa-1a-kxaxaa(-1)L(a-kx)(1)lim=lim=L=lim=0.x®+¥exx®+¥exx®+¥ex【注】:运用(k+1)此LHosptial¢法则后,可以使a-k£0.lnx1lnx(2)当a>0时,lim=lim=0.特别的,lim=0.x®+¥xax®+¥axax®+¥x1alnxxa(3)当a>0时,limxln

7、x=lim=lim=-alimx=0.++-a+--a1+x®0x®0xx®0-axx®0xxx【注】:极限lime并不存在,因为lime=+¥,lime=0.x®¥x®+¥x®-¥111同样,极限lim2x也不存在;因为lim2x=+¥,lim2x=0.x®0x®0+x®0-对于一些复杂的数列极限,一般利用函数极限的“归结原理”化为函数极限进行计算.函数极限的“归结原理”设fx()在x的某领域内有定义,则:lim()fx=AÛ对任意满足0x®x0limx=xx(¹x)的数列{}x均有,limfx()=A.n0n0nnn®+

8、¥n®+¥第3页浙江大学微积分(1)历年试题分类解答21、求:lim[x+2x+sinx-(x+2)]x®+¥22(x+2x+sin)(x-x+2)-2x+sinx+4I=lim=limx®+¥2x®+¥2x+2x+sinx+(x+2)x+2x+sinx+(x+2)-1-1-+2xsinx

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。