欢迎来到天天文库
浏览记录
ID:43442697
大小:287.01 KB
页数:9页
时间:2019-10-02
《《函数的基本性质》培优训练题(教师版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《函数的基本性质》培优训练题1.(2016•义乌市模拟)已知a为实数,函数f(x)=x2﹣
2、x2﹣ax﹣2
3、在区间(﹣∞,﹣1)和(2,+∞)上单调递增,则a的取值范围为( )A.[1,8]B.[3,8]C.[1,3]D.[﹣1,8]【解答】解:令函数g(x)=x2﹣ax﹣2,由于g(x)的判别式△=a2+8>0,故函数g(x)一定有两个零点,设为x1和x2,且x1<x2.∵函数f(x)=x2﹣
4、x2﹣ax﹣2
5、=,故当x∈(﹣∞,x1)、(x2,+∞)时,函数f(x)的图象是位于同一条直线上的两条射线,当x∈(x1,x2)时,函数f(x)的图象是抛物线y=
6、2x2﹣ax﹣2下凹的一部分,且各段连在一起.由于f(x)在区间(﹣∞,﹣1)和(2,+∞)上单调递增,∴a>0且函数g(x)较小的零点x1=≥﹣1,即a+2≥,平方得a2+4a+4≥a2+8,得a≥1,同时由y=2x2﹣ax﹣2的对称轴为x=,若且﹣1≤≤2,可得﹣4≤a≤8.综上可得,1≤a≤8,故实a的取值范围为[1,8],故选:A. 2.(2016•江西校级模拟)已知定义域为R的函数f(x)在(2,+∞)上单调递减,且y=f(x+2)为偶函数,则关于x的不等式f(2x﹣1)﹣f(x+1)>0的解集为( )A.(﹣∞,﹣)∪(2,+∞)B.(﹣,2)C
7、.(﹣∞,)∪(2,+∞)D.(,2)【解答】解:∵定义域为R的函数f(x)在(2,+∞)上单调递减,且y=f(x+2)为偶函数,∴y=f(x+2)关于x=0对称,即函数f(x+2)在(0,+∞)上为减函数,由f(2x﹣1)﹣f(x+1)>0得f(2x﹣1)>f(x+1),即f(2x﹣3+2)>f(x﹣1+2),即
8、2x﹣3
9、<
10、x﹣1
11、,平方整理得3x2﹣10x+8<0,即<x<2,即不等式的解集为(,2),故选:D 3.(2016•四川模拟)设f(x)满足:①任意x∈R,有f(x)+f(2﹣x)=0;②当x≥1时,f(x)=
12、x﹣a
13、﹣1,(a>0),若x
14、∈R,恒有f(x)>f(x﹣m),则m的取值范围是( )A.(0,+∞)B.(4,+∞)C.(3,+∞)D.(5,+∞)【解答】解:∵任意x∈R,有f(x)+f(2﹣x)=0,∴f(2﹣x)=﹣f(x),则函数关于(1,0)点对称,当x=1时,f(1)+f(2﹣1)=0,即2f(1)=0,则f(1)=0,∵当x≥1时,f(x)=
15、x﹣a
16、﹣1,∴f(1)=
17、1﹣a
18、﹣1=0,则
19、a﹣1
20、=1,则a﹣1=1或a﹣1=﹣1,则a=2或a=0,∵a>0,∴a=2,即当x≥1时,f(x)=
21、x﹣2
22、﹣1第9页(共9页)当x≤1时,﹣x≥﹣1,2﹣x≥1,即f(x)=
23、﹣f(2﹣x)=﹣(
24、2﹣x﹣2
25、﹣1)=1﹣
26、x
27、,x≤1,作出函数f(x)的图象如图:若f(x)>f(x﹣m),则由图象知,将函数f(x)向右平移m个单位即可,由图象知,m>4,故选:B 4.(2016•广安模拟)已知f(x)=32x﹣(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是( )A.(﹣∞,﹣1)B.(﹣∞,2﹣1)C.(﹣1,2﹣1)D.(﹣2﹣1,2﹣1)【解答】解:令3x=t(t>0),则g(t)=t2﹣(k+1)t+2,若x∈R时,f(x)恒为正值,则g(t)=t2﹣(k+1)t+2>0对t>0恒成立.∴①或②解①得:
28、﹣1<k<﹣1+;解②得:k≤﹣1.综上,实数k的取值范围是(﹣∞,2﹣1).故选:B.5.(2016•通州区一模)若定义域均为D的三个函数f(x),g(x),h(x)满足条件:∀x∈D,点(x,g(x))与点(x,h(x))都关于点(x,f(x))对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=3x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是( )A.(﹣∞,﹣]B.[﹣,]C.[﹣3,]D.[,+∞)【解答】解:作出g(x)和f(x)的图象,若h(x)≥g(x)恒成
29、立,则h(x)在直线f(x)的上方,即g(x)在直线f(x)的下方,则直线f(x)的截距b>0,且原点到直线y=3x+b的距离d≥1,即d==≥1,即
30、b
31、≥,则b≥或b≤﹣(舍),即实数b的取值范围是[,+∞),故选:D 第9页(共9页)6.(2016春•普宁市校级月考)定义在R上的函数f(x)满足f(x)=f(x﹣2),当x∈(1,3)时,f(x)=1+(x﹣2)2,则( )A.f(sin)>f(sin)B.f(sin)<f(cos)C.f(cos)>f(cos)D.f(tan)<f(tan)【解答】解:由f(x)=f(x﹣2)得函数的周期是2,∵x∈(
32、1,3)时,f(x)=1+(x﹣2)2
此文档下载收益归作者所有