欢迎来到天天文库
浏览记录
ID:43425736
大小:386.00 KB
页数:5页
时间:2019-10-02
《高二数学11.3 相互独立事件同时发生的概率教案3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题: l1.3相互独立事件同时发生的概率(三)教学目的:1理解独立重复试验的概念,明确它的实际意义;2.引出次独立重复试验中某事件恰好发生次的概率计算公式;3.了解概率计算公式与二项式定理的内在联系教学重点:次独立重复试验中某事件恰好发生次的概率计算公式教学难点:独立重复试验的判定授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在
2、大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形5 基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件7.等可能性事件的概
3、率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A和事件B是可以进行加法运算的10互斥事件:不可能同时发生的两个事件.一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥11.对立事件:必然有一个发生的互斥事件.12.互斥事件的概率的求法:如果事件彼此互斥,那么=13.相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件若与是相互独立事件,则与,与,与也相互独立14.
4、相互独立事件同时发生的概率:一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,二、讲解新课:1 独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率.它是展开式的第项三、讲解范例:例1.某气象站天气预报的准确率为,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率解:(1)记“预报1次,结果准确”为事件.预报5次相当于
5、5次独立重复试验,根据次独立重复试验中某事件恰好发生次的概率计算公式,5次预报中恰有4次准确的概率答:5次预报中恰有4次准确的概率约为0.41.(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即答:5次预报中至少有4次准确的概率约为0.74.例2.某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)解:记事件=“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验1小时内5台机床中没
6、有1台需要工人照管的概率,1小时内5台机床中恰有1台需要工人照管的概率,所以1小时内5台机床中至少2台需要工人照管的概率为答:1小时内5台机床中至少2台需要工人照管的概率约为.点评:“至多”,“至少”问题往往考虑逆向思维法例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?解:设要使至少命中1次的概率不小于0.75,应射击次记事件=“射击一次,击中目标”,则.∵射击次相当于次独立重复试验,∴事件至少发生1次的概率为.由题意,令,∴,∴,∴至少取5.答:要使至少命中1次的概率不小于
7、0.75,至少应射击5次四、课堂练习:1.每次试验的成功率为,重复进行10次试验,其中前7次都未成功后3次都成功的概率为()2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为()3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是()4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为()5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不
8、少于29环的概率为.(设每次命中的环数都是自然数)6.一名篮球运动员投篮命中率为,在一次决赛中投10个球,则投中的球数不少于9个的概率为.7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的命中率为.8.某车间
此文档下载收益归作者所有