欢迎来到天天文库
浏览记录
ID:43418588
大小:195.00 KB
页数:4页
时间:2019-10-01
《福建省福州市中考数学攻略(3)(无答案) 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、福建省福州市中考数学攻略(3)新人教版“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。”这是《课标》关于模型思想的一段描述。因此,各地中考试卷都有“方程(组)、不等式(组)、函数建模及其应用”类问题,专题5和6已经对方程(组)、不等式(组)的建模及其应
2、用进行了探讨,本专题再对函数建模及其应用进行探讨。结合2012年全国各地中考的实例,我们从下面五方面进行函数关系式建立方法的探讨:(1)应用待定系数建立函数关系式;(2)应用等量关系建立函数关系式;(3)应用几何关系建立函数关系式;(4)应用分段分析建立函数关系式;(5)应用猜想探索建立函数关系式。一、应用待定系数建立函数关系式:待定系数法是解决求函数解析式问题的常用方法,求函数解析式是初中阶段待定系数法的一个主要用途。这种方法适用于已知了函数类型(或函数图象)的一类函数建模问题。确定直线或曲线
3、方程就是要确定方程中x的系数与常数,我们常常先设它们为未知数,根据点在曲线上,点的坐标满足方程的关系,将已知的条件代入方程,求出待定的系数与常数,写出表达式。这是平面解析几何的重要内容,是求曲线方程的有效方法。初中阶段主要有正比例函数、一次函数、反比例函数、二次函数这几类函数,前面三种分别可设y=kx,y=kx+b,的形式(其中k、b为待定系数,且k≠0)。而二次函数可以根据题目所给条件的不同,设成一般式y=ax2+bx+c(a、b、c为待定系数),顶点式y=a(x-h)2+k(a、k、h为待定
4、系数),交点式y=a(x-x1)(x-x2)(a、x1、x2为待定系数)三类形式。根据题意(可以是语句形式,也可以是图象形式),确定出a、b、c、k、x1、x2等待定系数,求出函数解析式。例1.无论a取什么实数,点P(a-1,2a-3)都在直线l上,Q(m,n)是直线l上的点,则(2m-n+3)2的值等于.例2.如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)
5、求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.例3.如图,一次函数的图象分别与轴、轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.例4.如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△AC
6、D的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.二、应用等量关系建立函数关系式:等量关系法,又可称作方程转化法,即根据等量关系列出含有两个未知数的等式(二元方程),然后整理成函数形式。这种方法适用于“已知了关于变量之间的等量关系(含公式)”类函数建模题。常用的寻找等量关系的方法有:(1)从常见的数量关系中找等量关系;(2)从关键句中找等量关系;(3)从题中
7、反映的(或隐蔽的)基本数量关系确定等量关系。(有关几何问题的等量关系我们在下面介绍)例5.已知二次函数在和时的函数值相等。(1)求二次函数的解析式;(2)若一次函数的图象与二次函数的图象都经过点A,求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移个单位后得到的图象记为C,同时将(2)中得到的直线向上平移n个单位。请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围。三、应用几何关系建立函数关系式:即在
8、几何问题中,应用几何中的数量等量关系建立函数关系式。常用的数量等量关系有面积公式,勾股定理,比例线段(相似三角形的相似比),锐角三角函数,有关圆的公式等。例6.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 .例7.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E
此文档下载收益归作者所有