欢迎来到天天文库
浏览记录
ID:43381032
大小:43.00 KB
页数:4页
时间:2019-09-30
《小升初数学应用题大全 典型应用题解析(12) 北京版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
【小升初数学应用题大全】典型应用题解析(12) 1.快车与慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇.已知慢车从乙地到甲地用12.5小时,慢车到甲地停留半小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇共需多少时间? 解:快车每小时行1/5-1/12.5=3/25。当慢车到达甲地并休息之后,快车行了12.5+0.5-1=12小时,此时快车和慢车相距2-3/25×12=14/25。所以还需要14/25÷1/5=2.8小时相遇。从第一次相遇到第二次相遇共用去13+2.8-5=10.8小时。 2.某造纸厂在100天里共生产2000吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天? 中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨, 因为在100天里共生产2000吨,平均每天产量:2000÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3 最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天 中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨, 因为在100天里共生产2000吨,平均每天产量:2000÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3 最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天 3.有一座山里有若干个大和尚和若干个小和尚,已知7个大和尚每天共吃41个馒头,29个小和尚每天共吃11个馒头,而平均每个和尚恰好每天吃一个馒头,那么在这座山里至少有几个和尚? 大和尚:7x个,小和尚:29y个 7x+29y=41x+11y x=9y/17 y=17,x=94 至少有7×9+29×17=556个和尚 如果每人每天吃1个馒头,那么7个大和尚就会多出41-7=34个;29个小和尚就差29-11=18个馒头。由于34和18的最小公倍数是34×9或者17×18。所以至少有7×9+29×17=556人。 4.某校毕业生共分9个班,每班人数相等.已知一班的男生比二、三班的女生总数多1;四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1,那么该校毕业生中男、女生人数的比是多少? 解:前面三个班,女生人数相当于1个班的人数少1人,后面六个班,女生人数相当于3个班的人数多1。在9个班中女生人数刚好是1+3=4个班的人数,所以男女生人数比是4:5 5.一自行车选手在相距950千米的甲、乙两地间训练.他从甲地出发,去时每90千米休息一次,到达乙地后休息一天,再沿原路返回.返回时,每100千米休息一次.他发现恰好有一个休息地点与去时的一个休息地点相同.问这个地方距离甲地有多远? 去时距离甲地是90的倍数,即90,180,270千米……处 返回时距离乙地是100的倍数,即距离甲地是950-100的倍数 两者的交集是距离甲地450千米处 把它看作一个相遇问题。 950÷(100+90)=5 5×90=450千米。 6.汽车拉力赛有两个距离相等的赛程.第一赛程由平路出发,离中点26千米的地方开始上坡;通过中点行驶4千米后,全是下坡路;第二个赛程也是由平路出发,离中点4千米处开始下坡;通过中点继续前进行驶26千米后,全是上坡路.已知某赛车在这两个赛程中所用的时间相同,第二个赛程出发时的速度是第一赛程出发是速度的5/6,而遇到上坡时速度就要减慢25%,遇到下坡时速度就要增加25%.那么,每个赛程的距离各是多少千米? 7.甲、乙两个仓库,乙仓库原有存货1200吨.当甲仓库的货物运走7/15,乙仓库的货物运走1/3以后,再从甲仓库取出剩下货物的10%放入乙仓库,这时甲、乙两仓库中的货物重量恰好相等.那么甲仓库原有存货多少吨?4 1200吨×1/3=400吨,乙仓运走的, 1200吨-400=800吨.乙仓库剩下的, 1-7/15=8/15,是甲仓库剩下的, 8/15×(1-10%)=12/25,是甲现在剩下的, 12/25-(8/15×10%)=32/75,是乙仓库剩下的是甲原来的几分之几, 800÷32/75=1875吨,就是甲原来的存货。 8.甲、乙两车分别从A,B两地同时出发相向而行,6小时后相遇在C地,如果甲车的速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇的地点距离C地12千米;如果乙车的速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距离C地16千米.甲车原来每小时行多少千米? 由于假设的两车速度和相等,那么相遇时间就相同, 相遇时间是(12+16)÷5=5.6小时。 甲车原来每小时行12÷(6-5.6)=30千米 9.姐妹两人同时出发从甲地到乙地,妹妹走前半段路程每小时行3千米,走后半段路程每小时行6千米;姐姐在行这段路程所用的时间中,前半段时间是每小时行3千米,后半段时间是每小时行6千米.她们两人能同时到达乙地吗?为什么? 妹妹平均每小时行2÷(1/3+1/6)=4千米, 姐姐平均每小时行(3+6)÷2=4.5千米, 姐姐速度快,应先到。 10.今天长途班车比往常早到站了.汽车站立即派人骑自行车将随班车的邮件送往邮局,自行车走了半小时,遇到邮局派出取邮件的摩托车,车手接过邮件后,一点也不耽搁掉头就返回邮局,结果比往常早到了20分钟.如果摩托车每天去车站取邮件的出发时间和行驶速度都一样,那么今天长途班车比往常到站时间提前了几分钟? 40分钟.4 逆向思维比往常早到了20分钟是说车手少走的自行车所走的半小时的路程,即车手要少走的10分钟路程,所以长途车比往常提前了30+10=40分钟。4
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处